期刊文献+

基于车载点云数据的树木提取与分析 被引量:5

Tree extraction and analysis based on vehicle point cloud data
下载PDF
导出
摘要 本文基于高速公路高精度点云数据,首先通过点云数据的分类处理实现对树木点云数据的提取,将树木点云投影到水平面,采用DBSCAN密度聚类算法实现单根树木的提取;然后在数据密集区域存在树木树冠点云重叠的区域,本文结合树干几何特征提取树干的位置信息,计算所有点云到树干中心的欧氏距离,将所有点云归类到最近的树干进行粗分割;最后根据粗分割的树木轮廓特征确定树冠模型与树冠中心,提出了采用基于密度特征的格网竞争算法对重叠的区域进行精细分割。试验表明,本文采用的树木分割方法能够实现单棵树木精确提取。 This article bases on high-precision point cloud data of highways.Firstly,the point cloud data is extracted through the classification processing of point cloud data,and then the point cloud of the tree is projected to the horizontal plane,and the DBSCAN density clustering algorithm is used to realize the extraction of a single tree.Secondly,there is an area where the tree canopy point cloud overlaps in the data-intensive area.This paper extracts the position information of the trunk and calculates all points by combining the geometric features of the trunk The Euclidean distance froms the cloud to the center of the trunk classifies all point clouds to the nearest trunk for coarse segmentation.Finally,the crown model and crown center are determined based on the rough segmented tree contour features.A grid competition algorithm based on density features is proposed to finely segment the overlapping regions.Experiments show that the tree segmentation method used in this paper can achieve accurate extraction of a single tree.
作者 廖晓和 LIAO Xiaohe(Fujian Communications Planning&Design Institute Co.,Ltd.,Fuzhou 350004,China)
出处 《测绘通报》 CSCD 北大核心 2020年第11期163-166,共4页 Bulletin of Surveying and Mapping
关键词 点云数据 树木分割 DBCSAN聚类 分层格网 移动测量系统 point cloud data tree segmentation DBCSAN clustering hierarchical grid mobile measurement system
  • 相关文献

参考文献4

二级参考文献26

共引文献56

同被引文献56

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部