期刊文献+

基于先进[火用]分析方法的太阳能燃气联合循环[火用]损分析 被引量:2

ANALYSIS OF EXERGY DESTRUCTION OF INTEGRATED SOLAR COMBINED CYCLE SYSTEM BASED ON ADVANCED EXERGY ANALYSIS METHOD
下载PDF
导出
摘要 以槽式太阳能集热场和燃气-蒸汽联合循环所组成的太阳能燃气联合循环为研究对象,利用先进[火用]分析方法对系统各主要部件及整体[火用]损进行分析,并将系统[火用]损分为内部损、外部[火用]损、可避免[火用]损和不可避免[火用]损。结果表明:系统[火用]效率与太阳辐射强度(DNI)具有相同的变化趋势,而系统[火用]损率则与之相反。燃烧室和太阳能集热场2个部件具有较大的[火用]损率,分别为54.8%和16.1%;系统大部分[火用]损为内部[火用]损和不可避免[火用]损。系统中[火用]损最大的部件是燃烧室,占全部[火用]损的54.86%,其次是槽式太阳能集热场,占全部[火用]损的16.15%。 The integrated solar combined cycle system consisting of parabolic trough solar collector and combined cycle power plant is taken as the research object.The main components and overall plant of the proposed system are analyzed by advanced exergy analysis method.And the exergy destruction is split into endogenous,exogenous,avoidable and unavoidable exergy destruction.Results show that the system efficiency has the same trend of change with DNI,however,the exergy destruction rate shows an opposite trend with DNI.The combustion chamber and the solar field have large values of exergy destruction rate of 54.8%and 16.1%,respectively.The endogenous and unavoidable exergy destruction contributes the most of exergy destruction in the overall plant.Additionally,the combustion chamber has the largest exergy destruction of 54.86%and the solar field has the second largest exergy destruction of 16.15%.
作者 王树成 付忠广 张高强 张天清 石黎 Wang Shucheng;Fu Zhongguang;Zhang Gaoqiang;Zhang Tianqing;Shi Li(Key Laboratory of Condition Monitoring and Control for Power Plant Equipment,North China Electric Power University,Beijing 102206,China;School of Mechanical Engineering,Xiangtan University,Xiangtan 411105,China)
出处 《太阳能学报》 EI CAS CSCD 北大核心 2020年第11期192-198,共7页 Acta Energiae Solaris Sinica
基金 北京市自然基金(3162030) 中央高校基本科研业务经费(2018QN035)。
关键词 太阳能 燃气-蒸汽联合循环 太阳能燃气联合循环 太阳集热器 [火用]损 solar energy combined cycle power plants integrated solar combined cycle solar collectors exergy destruction
  • 相关文献

参考文献1

二级参考文献12

  • 1Barlev D, Vidu R, Stroeve P. Innovation in Concentrated Solar Power [J]. Solar Energy Materials and Solar Cells,2011, 95(10): 2703-2725.
  • 2Mills D. Advances in Solar Thermal Electricity Technol- ogy [J]. Solar Energy, 2004, 76(1-3): 19-31.
  • 3Fern indez-Garcfa A, Zarza E, Valenzuela L, et al. Parabolic-Trough Solar Collectors and Their Applications [J]. Renewable and Sustainable Energy Reviews, 2010, 14(7): 1695-721.
  • 4H P D K. Reducting the Cost of Energy From Parabolic Trough Solar Power Plants [R]. NREL, 2003.
  • 5Kelly B. Optimization Studies for Integrated Solar Com- bined Cycle Systems [C]//Proceedings of Solar Forum 2001. Washington: DC, 2001.
  • 6Dersch J, Geyer M, Herrmann U, et al. Trough Integra- tion Into Power Plants-a Study on the Performance and Economy of Integrated Solar Combined Cycle Systems [J]. Energy, 2004, 29(5/6): 947-59.
  • 7Baghernejad A, Yaghoubi M. Exergoeconomic Analysis and Optimization of an Integrated Solar Combined Cy- cle System (ISCCS) Using Genetic Algorithm [J]. Energy Conversion and Management, 2011, 52(5): 2193-203.
  • 8Zarza E, Rojas ME, Gonz 1ez L, et al. INDITEP: The First Pre-Commercial DSG Solar Power Plant [J]. Solar Energy, 2006, 80(10): 1270-1276.
  • 9Montes M J, Rovira A, Mufioz M, et al. Performance Anal- ysis of an Integrated Solar Combined Cycle Using Direct Steam Generation in Parabolic Trough Collectors [J]. Ap- plied Energy, 2011, 88(9): 3228-3238.
  • 10Dudley VE, Kolb GJ, Mahoney AR, et al. Test Results SEGS LS-2 Solar Collectors [R]. Sandia Report SAND94- 1884, 1994.

共引文献7

同被引文献11

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部