摘要
医学图像在临床诊断和治疗上起着至关重要的作用。放射治疗过程中采用计算机体层成像(CT)进行靶区定位和勾画。为了从多个角度获取病变体信息,需利用医学图像多模态的优势。然而,获取多种模态的医学图像是比较耗费资源的,同时无法保证患者状态的一致性。医学图像跨模态转换,可以利用一种模态图像预测另一种模态图像。本文详细综述了基于CT图像的超声图像、磁共振(magnetic resonance,MR)图像、正电子发射计算机断层显像(positron emission tomography,PET)跨模态模型研究,分类阐述了各模型的特点和存在的挑战,指出尚待开展的研究领域。
Medical images play an important role in clinical diagnosis and treatment.During the radiotherapy,CT can be available for the location and definition of the target volume.The medical images from multiple modalities are used to obtain the information on pathological body from many angles.However,obtaining multiple-modality medical images could be more resource-consuming,and difficult to guarantee the consistency of patients′state.Medical image translation between multiple modalities can achieve the predication from one modality to another.The studies on medical images from multiple modalities such as CT,ultrasound,MRI and PET are reviewed in detail in this paper,,with discussions provided about characteristics of multiple modalities and challenges faced,as well as the research areas to be developed.
作者
毕卉
姜一波
张琦
眭建锋
陆正大
倪昕晔
Bi Hui;Jiang Yibo;Zhang Qi;Sui Jianfeng;Lu Zhengda;Ni Xinye(Department of Radiation Oncology,Affiliated Changzhou No.2 People′s Hospital of Nanjing Medical University,213003,China;Department of Electronic Science and Technology School of Electrical Information Engineering,Changzhou Institute of Technology,213032,China;Department of Automation,School of Microelectronics and Control Engineering,Changzhou University,213164,China)
出处
《中华放射医学与防护杂志》
CAS
CSCD
北大核心
2020年第11期882-887,共6页
Chinese Journal of Radiological Medicine and Protection
基金
江苏省高等学校自然科学研究面上项目(19KJB520002)
2020年度国家博士后67批面上项目资助(2020M671277)。
关键词
声抗
跨模态转换
生成对抗网络
Acoustic resistance
Cross-modal transformation
Generative adversarial networks