期刊文献+

天然毛发复合材料的辐射合成及其对铀的吸附研究 被引量:2

Adsorption of Uranium by Amidoxime-Wool Composite Material
下载PDF
导出
摘要 本研究以天然羊毛为功能基材,开展了偕胺肟-羊毛复合材料的制备及其在海水提铀应用中的研究。通过基材预处理、共辐照等方法在羊毛基材表面进行丙烯腈接枝,利用调整射线能量、辐照总剂量等方法优化接枝反应条件,随后进行酰胺肟功能化反应,采用SEM及傅里叶变化红外对接枝、功能化前后的材料进行表征分析,并利用该类功能材料进行铀吸附研究。经功能化条件优化后,可获得吸附容量为62.62 mg/g的偕胺肟-羊毛复合材料。研究结果表明,该材料在Na、K、Ni、Cu干扰离子共存环境下对铀具有一定的选择性吸附能力,且主要为化学吸附。在真实海域的自然环境中可对铀实现0.35 mg/g的吸附容量。这种以天然毛发为原料的提铀复合材料,不仅更加绿色环保,也相对于传统复合材料具有更好的亲水性。 The preparation of amidoxime-wool composite material and its application in seawater uranium extraction were studied by using natural wool as functional substrate.Through substrate pretreatment,mutual irradiation,the wool surface was grafted by acrylonitrile.The best grafting reaction condition was obtained by optimizing the ray energy,total dose irradiation.Then the materials were characterized via SEM and fourier transform infrared(FTIR).After functionalized by amide oxime,the adsorption ability for uranium of the functional materials were characterized.The amidoxime-wool composite with adsorption capacity of 62.62 mg/g was obtained after optimizing of the functional conditions.The results show that the material has a certain selective adsorption capacity to uranium with the coexistence of Na,K,Ni and Cu interfering ions,and it is mainly chemical adsorption.Uranium adsorption capacity of 0.35 mg/g can be realized in the natural environment of real sea area.This uranium extraction composite material,which is made from natural hair,is not only greener but also has better hydrophilicity than the traditional composite material.
作者 陈柏桦 熊洁 何其飞 胡胜 CHEN Baihua;XIONG Jie;HE Qifei;HU Sheng(Institute of Nuclear Physics and Chemistry,China Academy of Engineering Physics,Mianyang 621900,China)
出处 《同位素》 CAS 2020年第6期338-346,共9页 Journal of Isotopes
基金 国家自然科学基金联合基金(U1830202)。
关键词 辐射接枝 羊毛 海水提铀 偕胺肟 吸附 radiation grafting wool adsorption of uranium from seawater amidoxime adsorption
  • 相关文献

参考文献4

二级参考文献49

  • 1Davies RV, Dr Kennedy J, Mcilroy RW, Dr Spence R. Extraction of uranium from sea water. Nature, 1964, 203:1110-1115.
  • 2Rao LF. Recent International R&D Activities in the Extraction of Uranium from Seawater. Lawrence Berkeley National Laboratory. 2011.
  • 3Tamada M. Current Status of Technology,for Collection of Uranium from Seawater. Japan Atomic Energy Agency, 2009.
  • 4Gorden AEV, Xu JD, Raymond, KN. Rational design of sequestering agents for plutonium and other actinides. Chem Rev, 2003, 103: 4207-4282.
  • 5Xu J, Raymond KN. Uranyl sequestering agents: Correlation of properties and efficacy with structure for UO22+ complexes of linear tetradentate 1-methyl-3-hydroxy-2(1H)-pyridinone ligands. Inorg Chem, 1999, 38:308-315.
  • 6Sather AC, Berryman OB, Rebek J Jr. Selective recognition and ex- traction of the uranyl ion. JAm Chem Soc, 2010, 132:13572-13574.
  • 7Beer S, Berryman OB, Ajami D. Encapsulation of the uranyl dication Chem Sci, 2010, 1:43-47.
  • 8Yang JB, Volesky B. Modeling uranium-proton ion exchange in bio- sorption. Enviro Sci Technol, 1999, 33:4079-4082.
  • 9Koide Y, Terasaki H, Sato H, Shosenji H, Yamada K. Flotation of uranium from seawater with phosphate esters of C-undecylcalix[4] resorcinarene. Bull Chem Soc Jpn, 1996, 69:785-790.
  • 10Rivas BL, Maturana HA, Villegas S. Adsorption behavior of metal ions by amidoxime chelating resin. J Appl Polym Sci, 2000, 77: 1994-1999.

共引文献33

同被引文献31

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部