期刊文献+

基于ADM算法的分数阶最简忆阻混沌电路 被引量:2

Fractional-order simplest memristive chaotic circuit based on Adomian decomposition method
下载PDF
导出
摘要 基于ADM分解算法,计算了分数阶最简忆阻混沌电路的数值解。采用相图、李雅普诺夫指数谱、分岔图、谱熵(SE)和C0复杂度等方法分析了分数阶最简忆阻混沌电路的动力学特性,同时确定了分数阶最简忆阻混沌电路的稳定性并给出了其稳定区域。研究结果表明,ADM算法能够精确分析计算分数阶混沌系统的有效数值解,动力学分析表明最简忆阻混沌电路具有丰富的动力学特性。 Based on ADM decomposition algorithm,the numerical solution of fractional-order simplest memristive chaotic circuit was calculated.The phase diagram,Lyapunov exponents spectrum,bifurcation diagram,spectral entropy(SE)and C0 complexity were used to analyze the dynamic characteristics of the fractional-order simplest memristive chaotic circuit.At the same time,the stability of the fractional-order simplest memristive chaotic circuit was determined and its stability region was given.The results showed that ADM algorithm could accurately analyze and calculate effective numerical solutions of fractional-order chaotic systems,and the dynamic analysis indicated that the simplest memristive chaotic circuit had rich dynamic characteristics.
作者 曹颖鸿 胡海英 阎慧臻 CAO Yinghong;HU Haiying;YAN Huizhen(School of Information Science and Engineering,Dalian Polytechnic University,Dalian 116034,China)
出处 《大连工业大学学报》 CAS 北大核心 2020年第6期455-461,共7页 Journal of Dalian Polytechnic University
基金 辽宁省教育厅科学研究一般项目(L2015043) 辽宁省博士科研启动基金指导计划项目(201601280).
关键词 ADM分解算法 分数阶最简混沌电路 动力学特性 复杂度 ADM decomposition algorithm fractional-order simplest chaotic circuit dynamical characteristic complexity
  • 相关文献

参考文献5

二级参考文献44

  • 1高心,周红鸥.分数阶系统的混沌特性及其控制[J].西南民族大学学报(自然科学版),2006,32(2):290-294. 被引量:7
  • 2王发强,刘崇新.分数阶临界混沌系统及电路实验的研究[J].物理学报,2006,55(8):3922-3927. 被引量:55
  • 3逯俊杰,刘崇新,张作鹏,陈向荣.基于状态观测器的分数阶统一混沌系统的同步控制[J].西安交通大学学报,2007,41(4):497-500. 被引量:6
  • 4申立群,王茂.一类不确定参数混沌系统的鲁棒跟踪控制[J].电机与控制学报,2007,11(4):380-383. 被引量:1
  • 5HUNGENAHALLY S. Fractional discriminant functions: emulation of real-index-order receptive fields for vision systems [ C ]//Systems, Man and Cybernetics : /EEE In- ternational Conference on Intelligent Systems for 21st Century: Piscatoway : IEEE, 1995 : 22 - 25.
  • 6OUSTALOUP A. Fractional order sinusoidal oscillators: Optimization and their use in highly linear FM modula- tion [ J]. IEEE Transactions on Circuits and Systems, 1981, 28(10) : 1007 - 1009.
  • 7LI Chunguang, CHEN Guanrong. Chaos in the fractional order Chert system and its control [ J]. Chaos, Solitons & Fractals, 2004, 22 (3) : 549 - 554.
  • 8GRIGORENKOL I, GRIGORENKO E. Chaotic dynam- ics of the fractional lorenz system [ J ]. Phys Rev Lett, 2003, 91(3) :034101.
  • 9DIETHELM K, FORD N J, FREED A D. A predictor- corrector approach for the numerical solution of fractional differential equations [ J ]. Nonlinear Dynamics, 2002, 29(1/2/3/4) : 3 -22.
  • 10DIETHELM K, FORD N J. Analysis of fractional differ- ential equations [ J ]. J Math Anal Appl, 2002, 265 (2) : 220 - 248.

共引文献48

同被引文献18

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部