摘要
基于ADM分解算法,计算了分数阶最简忆阻混沌电路的数值解。采用相图、李雅普诺夫指数谱、分岔图、谱熵(SE)和C0复杂度等方法分析了分数阶最简忆阻混沌电路的动力学特性,同时确定了分数阶最简忆阻混沌电路的稳定性并给出了其稳定区域。研究结果表明,ADM算法能够精确分析计算分数阶混沌系统的有效数值解,动力学分析表明最简忆阻混沌电路具有丰富的动力学特性。
Based on ADM decomposition algorithm,the numerical solution of fractional-order simplest memristive chaotic circuit was calculated.The phase diagram,Lyapunov exponents spectrum,bifurcation diagram,spectral entropy(SE)and C0 complexity were used to analyze the dynamic characteristics of the fractional-order simplest memristive chaotic circuit.At the same time,the stability of the fractional-order simplest memristive chaotic circuit was determined and its stability region was given.The results showed that ADM algorithm could accurately analyze and calculate effective numerical solutions of fractional-order chaotic systems,and the dynamic analysis indicated that the simplest memristive chaotic circuit had rich dynamic characteristics.
作者
曹颖鸿
胡海英
阎慧臻
CAO Yinghong;HU Haiying;YAN Huizhen(School of Information Science and Engineering,Dalian Polytechnic University,Dalian 116034,China)
出处
《大连工业大学学报》
CAS
北大核心
2020年第6期455-461,共7页
Journal of Dalian Polytechnic University
基金
辽宁省教育厅科学研究一般项目(L2015043)
辽宁省博士科研启动基金指导计划项目(201601280).
关键词
ADM分解算法
分数阶最简混沌电路
动力学特性
复杂度
ADM decomposition algorithm
fractional-order simplest chaotic circuit
dynamical characteristic
complexity