摘要
压缩感知理论相较于传统采样定律具有压缩率小的巨大优势,探究更优的信息重构算法具有重要意义。为解决传统压缩图像恢复时间长、压缩率高的问题,提出以循环神经网络进行图像恢复的方法,并将其与全连接网络、卷积神经网络比较分析,实现了2.2%压缩率下128×128单通道图片的重构。研究中,进一步比较分析了3个数据集、3种输入维度下,网络算法的性能指标及单张图像的恢复效率,证明了神经网络算法对图像重构的有效性、实时处理视频的可行性。
Compressed sensing theory has a huge advantage of small compression ratio compared with the traditional sampling law,and it is of great significance to explore better information reconstruction algorithms.In order to solve the problem of long recovery time and high compression rate of traditional compressed images,the method of image restoration using recurrent neural network was proposed and compared with fully-connected network and convolutional neural network to achieve the reconstruction of single-channel images of 128×128 with 2.2%compression ratio.In the research,the performance indexes of the network algorithm and the recovery efficiency of the single image were analyzed under three data sets and three input dimensions.The validity of the neural network algorithm for image reconstruction and the feasibility of real-time processing video are proved.
作者
王金
高紫俊
王智森
李博
田亚萍
WANG Jin;GAO Zijun;WANG Zhisen;LI Bo;TIAN Yaping(School of Information Science and Engineering,Dalian Polytechnic University,Dalian 116034,China)
出处
《大连工业大学学报》
CAS
北大核心
2020年第6期462-468,共7页
Journal of Dalian Polytechnic University
基金
辽宁省高等学校基本科研项目(2017J048)
辽宁省自然科学基金项目(20170520389)
辽宁省教育厅科学研究项目(J2020112).
关键词
压缩感知
神经网络
图像重构
稀疏性
compressed sensing
neural network
image reconstruction
sparse