期刊文献+

基于神经网络的压缩感知图像重构算法 被引量:3

Compressed sensing image reconstruction algorithm based on neural network
下载PDF
导出
摘要 压缩感知理论相较于传统采样定律具有压缩率小的巨大优势,探究更优的信息重构算法具有重要意义。为解决传统压缩图像恢复时间长、压缩率高的问题,提出以循环神经网络进行图像恢复的方法,并将其与全连接网络、卷积神经网络比较分析,实现了2.2%压缩率下128×128单通道图片的重构。研究中,进一步比较分析了3个数据集、3种输入维度下,网络算法的性能指标及单张图像的恢复效率,证明了神经网络算法对图像重构的有效性、实时处理视频的可行性。 Compressed sensing theory has a huge advantage of small compression ratio compared with the traditional sampling law,and it is of great significance to explore better information reconstruction algorithms.In order to solve the problem of long recovery time and high compression rate of traditional compressed images,the method of image restoration using recurrent neural network was proposed and compared with fully-connected network and convolutional neural network to achieve the reconstruction of single-channel images of 128×128 with 2.2%compression ratio.In the research,the performance indexes of the network algorithm and the recovery efficiency of the single image were analyzed under three data sets and three input dimensions.The validity of the neural network algorithm for image reconstruction and the feasibility of real-time processing video are proved.
作者 王金 高紫俊 王智森 李博 田亚萍 WANG Jin;GAO Zijun;WANG Zhisen;LI Bo;TIAN Yaping(School of Information Science and Engineering,Dalian Polytechnic University,Dalian 116034,China)
出处 《大连工业大学学报》 CAS 北大核心 2020年第6期462-468,共7页 Journal of Dalian Polytechnic University
基金 辽宁省高等学校基本科研项目(2017J048) 辽宁省自然科学基金项目(20170520389) 辽宁省教育厅科学研究项目(J2020112).
关键词 压缩感知 神经网络 图像重构 稀疏性 compressed sensing neural network image reconstruction sparse
  • 相关文献

参考文献1

二级参考文献82

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献711

同被引文献46

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部