期刊文献+

微通道内Cu-H2O纳米流体强制对流特性的数值模拟研究 被引量:1

Numerical Simulation of Flow and Heat Transfer Characteristics of Cu-H2O Nanofluids in Microchannel
原文传递
导出
摘要 采用格子玻尔兹曼方法(Lattice Boltzmann Method,LBM)研究了Cu-H2O纳米流体在二维微通道内强制对流流动与传热特征,分析了微通道内Cu纳米颗粒的体积分数φ、雷诺数Re、相对粗糙度ε等因素对流体流动与传热的影响。结果表明:在光滑壁面条件下,随着入口处Re数的增加,壁面处Nuave会随着变大,同时随着纳米流体体积分数φ的增加,壁面处Nuave也会增加;与光滑壁面相比,在粗糙壁面条件下,随着入口处Re数和纳米流体体积分数φ的增加,壁面处Nuave也随之增大,但Nuave数的增大程度要比光滑壁面条件下小,且随着壁面相对粗糙度ε的增大,壁面处Nuave随之减小。 The forced convection and the heat transfer feature of Cu-H2O nanofluids in two dimensional channel is studied by Lattice Boltzmann method(LBM), and the effects of volume fraction(φ), relative roughness(ε), Reynolds number(Re) of the Cu nanoparticle in microchannel on the fluid flow and heat transfer are analyzed. Results show that when the wall surface is smooth, with the increase of Re at the entrance, the Nuave at the wall increases, and that with the increase of volume fraction φ, the Nuave also increases;when the wall surface is tough, with the increase of Re at the entrance and volume fraction φ, the Nuave at the wall increases, but the increment is less than that when the wall surface is smooth. Besides, with the increase of relative roughness ε, the Nuave decreases.
作者 葛紫超 GE Zichao(School of Energy and Power Engineering,Nanjing University of Science and Technology,Nanjing 210094,China)
出处 《材料开发与应用》 CAS 2020年第5期18-26,共9页 Development and Application of Materials
关键词 纳米流体 相对粗糙度 微通道 格子玻尔兹曼方法 nanofluids relative roughness microchannel Lattice Boltzmann method
  • 相关文献

参考文献6

二级参考文献86

  • 1曹炳阳,陈民,过增元.纳米通道内液体流动的滑移现象[J].物理学报,2006,55(10):5305-5310. 被引量:47
  • 2吕永超,杨双根.电子设备热分析、热设计及热测试技术综述及最新进展[J].电子机械工程,2007,23(1):5-10. 被引量:73
  • 3薛文胥,王玮,闵敬春.颗粒聚集对纳米流体强化换热影响浅析[J].工程热物理学报,2006,27(1):115-117. 被引量:3
  • 4彭小飞,俞小莉,钟勋,袁庆丰.纳米流体热导率试验[J].浙江大学学报(工学版),2007,41(7):1177-1180. 被引量:9
  • 5[1]Choi U S. Enhancing Thermal Conductivity of Fluids with Nanoparticles. ASME, FED, 1995, 231: 99
  • 6[2]Eastman J A, Choi U S and Li S et al. Enhanced Thermal Conductivity through the Development of Nanofluids. In: Komarneni S, Parker J C and Wollenberger H J. Nanophase and Nanocomposite Materials II, MRS,Pittsburgh, 1997, 3-11
  • 7[3]Lee S, Choi U S. Application of Metallic Nanoparticle Suspensions in Advanced Cooling Systems. ASME, PVP, 1996, 342: 227-234
  • 8[4]Hamilton R L, Crosser O K. Thermal Conductivity of Heterogeneous Two-component Systems. I \ EC Fundamentals, 1962, 1: 182-191
  • 9CHOI S U S.Enhancing thermal conductivity of fluids with nanoparticles[C]//ASME FED 231.New York:ASME,1995:99-103.
  • 10XUAN Yiming,LI Qiang.Investigation on convective heat transfer and flow features of nanofluids[J].J Heat Trans,2003,125(1):151-155.

共引文献141

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部