期刊文献+

利用RBS序列策略在大肠杆菌中高效合成异戊二烯

Improvement of isoprene production in Escherichia coli by rational optimization of RBSs
原文传递
导出
摘要 [目的]提高现有产异戊二烯大肠杆菌工程菌株合成异戊二烯的产量。[方法]首先对异戊二烯合成酶这一关键酶进行RBS序列优化,提高了异戊二烯的产量;然后通过构建异戊二烯焦磷酸异构酶和异戊二烯合酶的融合蛋白,研究这两个蛋白间的交互作用,将异戊二烯的产量提高了40%;最后通过RBS策略,对甲羟戊酸下游途径的非关键酶进行表达调控,继续提高了异戊二烯的产量。[结果]利用优化RBS序列和融合蛋白策略,异戊二烯的产量最终提高到60 mg/L,比原始工程菌株提高了10倍。[结论]RBS序列优化可能成为菌株代谢工程改造的有力手段。此外,为了提高工程菌株的产量,不仅要关注关键酶,还要关注非关键酶。 [Objective]To improve the production of isoprene in the engineered E.coli strain.[Method]Firstly,we optimized the RBS sequence of isoprene synthase,a key enzyme in isoprene productive system,and increased the yield of isoprene.Then we focused on the protein interaction between isopentenyl diphosphate isomerase and isoprene synthase,and increased isoprene production by 40%by using the fusion protein strategy.Finally,RBS strategy was adopted to regulate the expression of non-key enzymes in the downstream of mevalonate pathway,which further increased the yield of isoprene.[Result]By utilization of RBS optimization and the fusion protein strategy,the yield of isoprene was finally increased to 60 mg/L,which was 10 times higher than that of the original strain.[Conclusion]RBS optimization could be a powerful strategy for metabolic engineering of strain.Moreover,to increase the production of engineered strain,our attention should not only be focused on the key enzymes,but also on the non-key enzymes.
作者 娄陈美 于涛 LOU Chen-mei;YU Tao(Key Laboratory of Saline-alkali Vegetation Ecology Restoration,Ministry of Education;College of Life Science,Northeast Forestry University,Harbin 150040,China)
出处 《生物技术》 CAS 2020年第5期431-438,共8页 Biotechnology
基金 中央高校基本科研业务费专项资金项目(2572017PZ09)。
关键词 生物合成 异戊二烯 大肠杆菌 核糖体结合位点 融合蛋白 biosynthesis isoprene Escherichia coli ribosome binding site fusion protein
  • 相关文献

参考文献1

二级参考文献49

  • 1岳鹏.异戊二烯的生产技术及市场分析[J].炼油与化工,2006,17(2):3-5. 被引量:15
  • 2Whited GM, Feher FJ, Benko DA, et al. Development of a gas-phase bioprocess for isoprene-monomer production using metabolic pathway engineering. Ind Biotechnol, 2010, 6(3): 152-163.
  • 3Beck ZQ, Cervin MA, Nielsen AT, et al. Compositions and methods of PGL for the increased production of isoprene: US, 8455236 B2. 2013-06-04.
  • 4Zurbriggen A, Kirst H, Melis A. Isoprene production via the mevalonic acid pathway in Escherichia coli (Bacteria). Bioenerg Res, 2012, 5(4): 814-828.
  • 5Kuzuyama T. Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units. Biosci Biotechnol Biochem, 2002, 66(8): 1619-1627.
  • 6Rodriguez-Concepci6n M, Boronat A. Elucidationof the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol, 2002, 130(3): 1079-1089.
  • 7Rohmer M. Mevalonate-independent methylerythritol phosphate pathway for isoprenoid biosynthesis. Elucidation and distribution. Pure Appl Chem, 2003, 75(2/3): 375-388.
  • 8Eisenreich W, Bacher A, Arigoni D, et al. Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell Mol Life Sci, 2004, 61(12): 1401-1426.
  • 9Rohmer M, Knani M, Simonin P, et al. Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J, 1993, 295(Pt 2): 517-524.
  • 10Schwarz KM. Terpen-biosynthese in Ginkgo biloba: eine Uberraschende geschichte. Zurich, Switzerland: Eidgenossischen Technischen Hochschule, 1994.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部