期刊文献+

Studies on mass attenuation coefficients for some body tissues with different medical sources and their validation using Monte Carlo codes

下载PDF
导出
摘要 The mass attenuation coefficients of the breasts,lungs,kidneys,pancreas,liver,eye lenses,thyroid,brain,ovary,heart,large intestines,blood,skin,spleen,muscle,and cortical bone were measured at different sources(i.e.,0.021,0.029,0.03,0.14,0.218,0.38,0.412,0.663,0.83,and 1.25 MeV)using various methods including the Monte Carlo N-particle transport code(MCNP),the geometry and tracking code(GEANT4),and theoretical approach described in this study.Mass attenuation coefficients were also compared with the values from the national institute of standards and technology(NIST-XCOM).The values obtained were similar to those obtained using NISTXCOM.Our results show that the theoretical method is quite convenient in comparison with GEANT4 and MCNP in the calculation of the mass attenuation coefficients of the human body samples applied when compared with the NIST values and demonstrated an acceptable difference.
出处 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2020年第12期50-64,共15页 核技术(英文)
  • 相关文献

二级参考文献27

  • 1J.T. Bushberg, J.A. Seibert, E.M. Leidholdt, J.M. Boone, TheEssential Physics of Medical Imaging (William-Wilkins Press,New York, 2001).
  • 2M.J. Berger, J.H. Hubbell, Photon Cross section on a PersonalComputer (XCOM). NBSIR87-3597 (National Institute of Standardsand Technology, Gaithersburg, 1987).
  • 3T.T. Bohlen, F. Cerutti, M.P.W. Chin et al., The FLUKA code:developments and challenges for high energy and medicalapplications. Nucl. Data Sheets 120, 211–214 (2014). doi:10.1016/j.nds.2014.07.049.
  • 4A. Ferrari, P.R. Sala, A. Fasso, et al., Fluka: A Multi-ParticleTransport Code. CERN, INFN/TC_05/11, SLAC-R-773 (2005).
  • 5S. Agostinelli, J. Allison, K. Amako et al., Geant4-a simulationtoolkit. Nucl. Instrum. Methods A 506, 250–303 (2003). doi:10.1016/S0168-9002(03)01368-8.
  • 6J. Allison, K. Amako, J. Apostolakis et al., Geant4 developmentsand applications. IEEE Trans. Nucl. Sci. 53, 270–278 (2006).doi:10.1109/TNS.2006.869826.
  • 7E.E. Ermis, C. Celiktas, E. Pilicer, A method to enhance coincidencetime resolution with applications for medical imagingsystems (TOF/PET). Radiat. Meas. 62, 52–59 (2014). doi:10.1016/j.radmeas.2014.01.013.
  • 8B. Alpat, E. Pilicer, S. Blasko et al., Total and partial fragmentationcross-section of 500 MeV/nucleon carbon ions on differenttarget materials. IEEE Trans. Nucl. Sci. 60, 4673–4682 (2013).doi:10.1109/TNS.2013.2284855.
  • 9I. Tapan, F.B. Pilicer, Silicon tracker simulation for the TurkishAccelerator Center particle factory. Nucl. Instrum. Methods A765, 240–243 (2014). doi:10.1016/j.nima.2014.05.100.
  • 10B. Alpat, E. Pilicer, L. Servoli et al., Full Geant4 and FLUKAsimulations of an e-LINAC for its use in particle detectors performancetests. JINST 7, P03013 (2012). doi:10.1088/1748-0221/7/03/P03013.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部