期刊文献+

基于机器学习的管道金属损失缺陷识别方法 被引量:23

Recognition Method of Pipeline Metal Loss Defects Based on Machine Learning
下载PDF
导出
摘要 针对石化管道漏磁检测时缺陷较难识别的问题,首先对管道金属损失缺陷类型进行分类量化,建立石化管道金属损失缺陷漏磁检测三维有限元模型,采用Maxwell对1000组缺陷进行了漏磁仿真,得到了漏磁信号数据;然后分析了漏磁信号与缺陷类型及尺寸之间的关系,提取了漏磁检测信号的4个特征值,并验证了特征值对于识别缺陷类型的有效性;最后采用支持向量机、随机森林以及梯度提升决策树(GBDT)3种机器学习算法对缺陷信号特征量进行了分类识别。研究结果表明,3种算法对于缺陷的分类识别效果均较好,特别是GBDT算法在现有的数据范围内达到了100%的识别率。研究结果对石化管道完整性评价具有一定的指导意义。 In view of the difficulty of identifying defects in petrochemical pipeline magnetic flux leakage(MFL)detection,the types of metal loss defects in pipelines are classified and quantified,and the three-dimensional finite element model of MFL detection of petrochemical pipeline metal loss defects is established.Then,the relationship between MFL signal and defect type and size is analyzed,and four eigenvalues of MFL signal are extracted,and the effectiveness of the eigenvalues for identifying defect types is verified.Finally,three machine learning algorithms,support vector machine,random forest and gradient boosting decision trees(GBDT),are used to classify and identify the feature quantity of defect signal.The results show that the three algorithms are effective for defect classification and recognition,especially GBDT algorithm achieves 100%recognition rate in the existing data range.The study has a certain guiding significance for the integrity evaluation of petrochemical pipeline.
作者 赵翰学 张咪 郭岩宝 王德国 何仁洋 Zhao Hanxue;Zhang Mi;Guo Yanbao;Wang Deguo;He Renyang(College of Mechanical and Transportation Engineering,China University of Petroleum(Beijing);China Special Equipment Testing and Research Institute)
出处 《石油机械》 北大核心 2020年第12期138-145,共8页 China Petroleum Machinery
基金 国家重点研发计划项目课题“地下管道金属损失规律、检测及超期服役寿命预警技术研究”(2017YFF0210404) 中国石油大学(北京)科研基金资助项目“油气管道多源检测数据融合方法研究”(2462018YJRC018)、“改善基本办学专项”(2462020XKJS01)。
关键词 石化管道 金属损失 漏磁检测 机器学习 缺陷分类识别 petrochemical pipeline metal loss magnetic flux leakage detection machine learning detect classification recognition
  • 相关文献

参考文献10

二级参考文献74

共引文献164

同被引文献219

引证文献23

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部