摘要
文中针对智能船舶视觉传感器采集到的图像进行目标检测,提出基于YOLOv3-tiny的深度卷积神经网络图像细粒度检测方法.该方法使用实验团队建立的船舶图像数据库,对图片进行人工标注,使用k-means算法对数据集锚框进行聚类,采用数据增强策略的YOLOv3-tiny深度卷积神经网络对船舶图像进行训练与测试.实验结果表明:本文提出的改进YOLOv3-tiny模型在测试集上的平均精度达到了62.85%,实时检测帧率达到了136帧/s,可以辅助船舶驾驶人员识别水面目标.
A fine-grained image detection method based on YOLOv3-tiny was proposed for the images collected by intelligent ship vision sensors.The method used the ship image database established by the experimental team to manually label the images.K-means algorithm was adopted to cluster anchor frames of data sets,and YOLOv3-tiny deep convolution neural network with data enhancement strategy was used to train and test ship images.The experimental results show that the average accuracy of the improved YOLOv3-tiny model in the test set reaches 62.85%,and the real-time detection frame rate reaches 136 f/s,which can assist ship drivers to identify water targets.
作者
梁月翔
冯辉
徐海祥
LIANG Yuexiang;FENG Hui;XU Haixiang(Key Laboratory of High Performance Ship Technology,Wuhan University of Technology,Ministry of Education,Wuhan 430074,China;School of Transportation,Wuhan University of Technology,Wuhan 430063,China)
出处
《武汉理工大学学报(交通科学与工程版)》
2020年第6期1041-1045,1051,共6页
Journal of Wuhan University of Technology(Transportation Science & Engineering)
基金
国家自然科学基金项目(51879210,51979210)
中央高校基本科研业务费专项资金项目(2019III040,2019III132CG)资助。