期刊文献+

基于异常点检测和改进kNN算法的台户关系辨识方法研究 被引量:2

Research on the Method of Identification of the Relationship Between Transformer and User Based on Abnormal Point Detection and Improved kNN Algorithm
下载PDF
导出
摘要 台户关系识别是电网公司实现营配贯通的基础。为此,提出一种基于异常点检测和改进kNN算法的台户关系辨识方法。首先,利用局部异常因子算法剔除不属于待辨识台区的用户,保证待辨识台区和用户具备映射关系。然后,对传统的kNN算法进行改进,避免k值选取带来的过拟合或训练误差较大等缺陷,提升算法的准确性和鲁棒性,最终实现台区用户的有效辨识。算例分析表明,所提的台区用户辨识方法能够准确有效识别台户关系,且更适合实际辨识工况。 Identification of the relationship between transformer and user is the basis on which the power grid company realizes the connection between marketing business and production business.For this reason,a method based on abnormal point detection and improved kNN algorithm was proposed in this paper for identification of transformer-user relationship.Firstly,the local anomaly factor algorithm was used to reject those users not belonging to the transformer area to be identified,so as to ensure mapping relationship between the transformer area to be identified and the user.Then,the traditional kNN algorithm was improved to avoid over-fitting or large training error caused by k value selection,improve the accuracy and robustness of the algorithm,and finally realize effective transformer area and user identification.Example analysis showed that the proposed identification approach could identify the relationship between transformer and user and was quite suitable for actual identification conditions.
作者 余妍 孟婕 陈溪 胡伟 Yu Yan;Meng Jie;Chen Xi;Hu Wei(Honghe Power Supply Bureau, Yunnan Power Grid Co., Ltd., Honghe Yunnan 661100, China)
出处 《电气自动化》 2020年第6期35-37,共3页 Electrical Automation
关键词 台户关系 异常点检测 局部异常因子 改进KNN算法 相关系数 relationship between transformer and user abnormal point detection local abnormal factor improved kNN algorithm correlation coefficient
  • 相关文献

参考文献6

二级参考文献110

  • 1韩小涛,聂一雄,尹项根.基于OPNET的变电站二次回路通信系统仿真研究[J].电网技术,2005,29(6):67-71. 被引量:44
  • 2余贻鑫.面向21世纪的智能配电网.南方电网技术研究,2006,2(6):14-16.
  • 3EPRI. 1009102 Power delivery system and electricity markets of the future[R]. PaloAlto, CA: EPRI, 2003.
  • 4EPRI. 1010915 Technical and system requirements of advanced distrihutionautomation[R]. PaloAlto, CA: EPRI, 2004.
  • 5EPRI. 1014600 Electricite de France research and development, profiling and mapping of intelligent grid r&d programs[R]. Palo Alto, CA: EPRI, 2006.
  • 6Haase P. Intelligrid: a smart network of power[J]. EPRI Journal, 2005(Fall): 17-25.
  • 7U. S. Department of Energy , National Energy Technology Laboratory. Modern grid initiative: a vision for modern grid[EB/OL]. 2007-03-01 [2008-10-10]. http://www.netl.doc.gov/modemgrid/docs/.
  • 8Galvin Electricity Initiative. The path to perfect power: a technical assessment[R]. PaloAlto, CA: GalvinElectricity Initiative, 2007.
  • 9European Commission. European technology platform smart grids: vision and strategy for Europe's electricity networks of the future [EB/OL] . 2008-10-10 . http://ec.europa.eu/research/energy/pdf/ smartgrids_en.pdf.
  • 10Global Environment Fund & Centre for Smart Energy. The emerging smart grid[R]. Second Edition. Washington: Global Environment Fund, 2006.

共引文献724

同被引文献25

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部