期刊文献+

Multi-window dilation-and-modulation frames on the half real line

原文传递
导出
摘要 Wavelet and Gabor systems are based on translation-and-dilation and translation-and-modulation operators,respectively,and have been studied extensively.However,dilation-and-modulation systems cannot be derived from wavelet or Gabor systems.This study aims to investigate a class of dilation-and-modulation systems in the causal signal space L^2(R+).L^2(R+)can be identified as a subspace of L^2(R),which consists of all L^2(R)-functions supported on R+but not closed under the Fourier transform.Therefore,the Fourier transform method does not work in L^2(R+).Herein,we introduce the notion ofΘa-transform in L^2(R+)and characterize the dilation-and-modulation frames and dual frames in L^2(R+)using theΘa-transform;and present an explicit expression of all duals with the same structure for a general dilation-and-modulation frame for L^2(R+).Furthermore,it has been proven that an arbitrary frame of this form is always nonredundant whenever the number of the generators is 1 and is always redundant whenever the number is greater than 1.Finally,some examples are provided to illustrate the generality of our results.
出处 《Science China Mathematics》 SCIE CSCD 2020年第12期2423-2438,共16页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant No.11271037)。
  • 相关文献

参考文献2

二级参考文献27

  • 1LI YunZhang,LIAN QiaoFang.Gabor systems on discrete periodic sets[J].Science China Mathematics,2009,52(8):1639-1660. 被引量:4
  • 2Benedetto J J, Li S. The theory of multiresolution analysis frames and applications to filter banks. Appl Comput Harmon Anal, 1998, 5: 389-427.
  • 3Bownik M. Tight frames of multidimensional wavelets. J Fourier Anal Appl, 1997, 3: 525-542.
  • 4Bownik M. A characterization of affine dual frames in L2(Rn). Appl Comput Harmon Anal, 2000, 8: 203-221.
  • 5Bownik M. Anisotropic Hardy spaces and wavelets. Mem Amer Math Soc, 2003, 164: 122pp.
  • 6Christensen O. An Introduction to Frames and Riesz Bases. Boston: Birkh?user, 2003.
  • 7Chui C K, He W. Compactly supported tight frames associated with refinable functions. Appl Comput Harmon Anal,2000, 8: 293-319.
  • 8Chui C K, He W, St?ckler J. Compactly supported tight and sibling frames with maximum vanishing moments. Appl Comput Harmon Anal, 2002, 13: 224-262.
  • 9Chui C K, Shi X, St?ckler J. Affine frames, quasi-affine frames, and their duals. Adv Comput Math, 1998, 8: 1-17.
  • 10Chui C K, Shi X. Bessel sequences and affine frames. Appl Comput Harmon Anal, 1993, 1: 29-49.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部