期刊文献+

基于低秩表示和稀疏自动编码器的情绪识别研究

Research on Emotion Recognition Based on Low Rank Representation and Sparse Automatic Encoder
下载PDF
导出
摘要 针对当今在多模态数据处理过程中存在的两个问题:1)多模态数据中存在冗余信息和噪声;2)如何平衡多模态数据间的关系,我们提出了一种低秩表示和稀疏自动编码器相结合的情绪识别方法(Low Rank Representation and Sparse Automatic Encoder Classification,LSC)。采用低秩表示从数据的高维空间中提取潜在特征,并且可以去除数据噪声和冗余信息;采用自动编码器对提取的特征进行融合,解决了多模态数据信息间关系无法平衡的问题,使特征更具鲁棒性,最后进行分类。进行了实验,证明此方法的有效性。 In view of the two problems in multi-modal data processing today;1)redundancy and noise exist in multi-modal data;2)how to balance the relationship between multi-modal data,a Low Rank Representation and Sparse Automatic Encoder Classification method(LSC)is proposed.The low-rank representation is used to extract potential features from the high-dimensional space of the data,and the noise and redundant information in the data can be removed.The extracted features are fused with an automatic encoder,which solves the problem that the relationship between multi-modal data and information cannot be balanced,and makes the features more robust,and finally classifies them.Experiments are carried out to prove the effectiveness of this method.
作者 郑秋玉 董爱美 李本营 李志刚 ZHENG Qiu-yu;DONG Ai-mei;LI Ben-ying;LI Zhi-gang(School of Computer Science and Technology,Qilu University of Technology(Shandong Academy of Sciences),Jinan 250353,China)
出处 《齐鲁工业大学学报》 2020年第6期18-28,共11页 Journal of Qilu University of Technology
基金 国家自然科学基金(61703219)。
关键词 情绪识别 多模态 低秩表示 稀疏自动编码器 融合 emotion recognition multimodal low rank representation sparse automatic encoder fusion
  • 相关文献

参考文献2

二级参考文献13

  • 1Smith L I.A Tutorial on Principal Components Analysis[OL].http://csnet.Otago.ac.nz/cosc453/student tutorials/principal components.pdf,February 2002.
  • 2Zheng Y Z,Hou X D,Bian T T,et al.Effective Emage Fusion Rules ofMulti-scale Image Decomposition[C].In:Petrou M,Saramaki T,Ercil A,Loncaric S,eds.Proc.of the 5th Int'l Symp.on Image and Signal Processing and Analysis.lstanbul:IEEE,2007,362-366.
  • 3Hotelling H.Relations betweenTwo Sets of Vriates[J].Biometrika,1936,8:321-377.
  • 4Vinograde B.Canonical Positive Definite Matrices Under Internal Linear Transformations[C].Proceedings of the American Mathematical Society,1950:159-161.
  • 5Steel R G D.Minimum Generalized Variance for A Set of Linear Functions[J].The Annals of Mathematical Statistics,1951,22(3):456-460.
  • 6Kettenring J R.Canonical Analysis of Several Sets of Variables[J].Biometrika,1971,58:433-451.
  • 7Nielsen A A.Multiset Canonical Correlations Analysis and Multispectral,Truly Multitemporal Remote Sensing Data[J].IEEE,2002,11(3):293-305.
  • 8Toet A.Image Fusion by A Ratio of Low-pass Pyramid[J].Pattern Recognition Letters,1989,9:245-253.
  • 9Pajares G,de la Cruz JM.A Wavelet-based Image Fusion Tutorial] J].Pattern Recognition,2004,37(9):1855-1872.
  • 10Xydeas C S,Petrovic V.Gradient-Based Multiresolution Image Fusion[J].IEEE Transactions on Image Processing,2004,13(2):228-237.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部