期刊文献+

Ka波段在线自检测MEMS微波功分器的设计与优化 被引量:3

Optimization and Design of Ka-Band Inline Self-Detection MEMS Microwave Power Divider
下载PDF
导出
摘要 提出了一种基于MEMS技术,由MEMS微波功分器和在线式MEMS微波功率传感器组成的在线自检测MEMS微波功分器,实现了MEMS微波功分器在Ka波段的实时在线功率自检测。MEMS微波功分器为T型功率等分功分器,由共面波导、圆形的不对称共面带线和空气桥构成,三个端口处分别放置三个相同的在线式MEMS微波功率传感器用于端口处信号功率的实时监测。该结构基于GaAs MMIC工艺,它可以与GaAs微波电路实现单片集成。通过ADS和HFSS软件的协同仿真,在中心频率34 GHz处,回波损耗S11小于-30 dB,插入损耗S21(S31)约为-4.7 dB。在26 GHz^40 GHz的频率范围内,S11约小于-15 dB,隔离度S23小于-15 dB。 An inline self-detection MEMS(Micro-Electro-Mechanical Systems)microwave power divider is presented based on the MEMS technology. This self-detection divider consists of a MEMS microwave power divider and three inline-type MEMS microwave power sensors,which realizes the real-time inline power detection in the Ka-band. The MEMS microwave power divider is a T-type equalization power divider,which is composed of a coplanar waveguide,a circular asymmetric coplanar stripline and two air bridges. In order to monitor the signal power in real time,the three MEMS microwave power sensors are identical and placed at three ports of the divider,respectively. This structure has been fabricated by the GaAs MMIC(gallium arsenide monolithic microwave integrated circuit)process,which can be monolithically integrated with GaAs microwave circuits. Using the co-simulation of ADS and HFSS software,the return loss S11 is lower than-30 dB at the center frequency of 34 GHz while the insertion loss S21(S31)is about-4.7 dB. In the frequency range of 26 GHz^40 GHz,the S11 is lower than-15 dB while the isolation S23 is also lower than-15 dB.
作者 郑从兵 张志强 黄晓东 ZHENG Congbing;ZHANG Zhiqiang;HUANG Xiaodong(Key Laboratory of MEMS of the Ministry of Education,Southeast University,Nanjing Jiangsu 210096,China)
出处 《传感技术学报》 CAS CSCD 北大核心 2020年第9期1229-1234,共6页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金项目(61604039) 至善青年学者支持计划项目(2242019R40030)。
关键词 MEMS 自检测 微波功分器 微波功率传感器 MEMS self-detection microwave power divider microwave power sensor
  • 相关文献

参考文献3

二级参考文献36

  • 1Dehe A, Fricke K, Krozer V. Broadband Thermoelectric Microwave Power Sensors Using GaAs Foundry Process [C]//IEEE 2002 MTT-S International Microwave Symposium Digest, 2002: 1829-1832.
  • 2Dehe A, Krozer V, Chen B, Hartnagel H I. High-sensitity Microwave Power Sensor for GaAs-MMIC Implementation[J]. IEEE Electron Device Letters, 1996, 32 (23) :2149-2150.
  • 3Dehe A, Krozer V, Fricke K, Klingbeil H, Beilenhoff K, Hartnagel H L. Integrated Microwave Power Sensor [J].IEEE Electron Device Letters, 1995, 31 (25):2187-2188.
  • 4Milanovic V, Gaitan M, Bowen E D, Tea N H, Zaghoul M E.Implementation of Thermoelectric Microwave Power Sensorsin CMOS Technology [C]// 1997 IEEE International Symposium on Circuits and Systems, 1997:2753-2756.
  • 5Chen D Y, Cui D F, Han J H, Chen S F, Wang L, Li Z G,Fu B X. A Microstructure Semiconductor Thermocouple for Microwave Power Sensors [C]// 1997 Asia Pacific Microwave Conference, 1997: 917-919.
  • 6Mutamba K, Beilenhoff K, Megej A, Dornor R, Genc E,Fleekenstein A, Heyman P, Diekman J, Woelk C, Harmagel H L. Micromachined 60 GHz GaAs Power Sensor with Integrated Receiving Antenna [C]// IEEE 2001 MTT-S International Microwave Symposium Digest, 2001:2235-2238.
  • 7Fetting R. A View to Recent Developments in Thermoelectric Sensors [C]// IEEE 15th International Conference on Thermoelectries, 1996 : 315-320.
  • 8姚仲鹏,王瑞君.传热学(第二版)[M].北京:北京理工大学出版社,2001.
  • 9Kozov A G. Optimization of Thin-Film Thermoelectric radiation Sensor with Comb Thermoelectric Ttansducer [J]. Sensors and Actuators A, 1999, 75 (2) : 139-150.
  • 10Milanovic V, Gaitan M, Bowen E D, Tea N H, Zaghoul M E.Thermoelectric Power Sensor for Microwave Applications by Commercial CMOS Fabrication [J]. IEEE Electron Device Letters, 1997, 18 (9): 450-452.

共引文献10

同被引文献8

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部