期刊文献+

MIMO电力线载波通信中基于压缩感知的信道与脉冲噪声联合估计方法 被引量:9

Joint Estimation of Channel and Impulse Noise based on Compressed Sensing in MIMO Power Line Carrier Communication
下载PDF
导出
摘要 在多输入多输出电力线通信(Multiple-input Multiple-output Power Line Communication,MIMO-PLC)系统中,信道状态信息的准确性将直接影响系统的整体性能,且电力线信道中复杂的脉冲噪声会使信道估计技术性能降低。因此,针对在脉冲噪声影响下进行信道估计的问题,提出一种基于快速块稀疏贝叶斯学习算法的信道与脉冲噪声联合估计方法。该方法将信道与脉冲噪声联合估计转换为压缩感知问题,利用MIMO-PLC系统信道间的相关性以及信道冲击响应和脉冲噪声的稀疏特性进行求解。仿真结果表明,与传统信道估计和脉冲噪声抑制方法相比,在不同导频数量下提出的联合估计方法均有更好的性能。 In MIMO-PLC(multiple-input multiple-output power line communication)system,the accuracy of the channel state information will directly affect the overall performance of the system,and the complex impulse noise in the power line channel will degrade the performance of the channel estimation technology.Therefore,this paper proposes a joint channel and impulse noise estimation method based on fast marginalized block sparse Bayesian learning algorithm for the problem of channel estimation under the influence of impulse noise.This method transforms the joint estimation of channel and impulse noise into a compressed sensing problem,and uses the correlation between the channels of MIMO-PLC system and the sparse characteristics of channel impulse response and impulse noise to solve this problem.Simulation results indicate that compared with the traditional channel estimation and impulse noise suppression methods,the joint estimation method proposed in this paper has better performance under different numbers of pilots.
作者 赵闻 张捷 李倩 党三磊 吴倩文 路韬 ZHAO Wen;ZHAGN Jie;LI Qian;DANG San-lei;WU Qian-wen;LU Tao(Metering Center of Guangdong Power Grid Co.,Ltd.,Guangzhou Guangdong 510080,China;Beijing University of Posts and Telecommunications,Beijing 100876,China)
出处 《通信技术》 2020年第9期2101-2107,共7页 Communications Technology
基金 中国南网电网有限责任公司科技项目(No.GDKJXM20185366)。
关键词 电力线载波通信 MIMO 信道估计 脉冲噪声抑制 压缩感知 power line communication MIMO channel estimation impulse noise suppression compressed sensing
  • 相关文献

参考文献3

二级参考文献24

  • 1BAJWN W U, SAYEED A M, NOWAK R. Sparse multi- path channels: modeling and estimation [C]//Digital Signal Processing Workshop and 5th IEEE Digital Signal Processing Education Workshop, Marco Is- land, FL, 2009: 320-325.
  • 2CARBONELLI C, VEDANTAM S, MITRA U. Sparse channel estimation with zero tap detection [J]. IEEE Transactions on Wireless Communication, 2007, 6(5): 1743-1753.
  • 3WAN F, ZHU W P, SWAMY M N S. Semi-blind most significant tap detection for sparse channel esti- mation of OFDM systems [J]. IEEE Transactions on Circuits and Systems-I: Regular Papers, 2010, 57(3): 703-713.
  • 4DONOHO D. Compressed sensing [J]. IEEE Transac- tions Information Theory, 2006, 52(4): 1289-1306.
  • 5BAJWN W U, HAUPT J, SSYEED A M, NOWAK R. Compressed channel sensing: a new approach to es- timating sparse multipath channels [J]. IEEE Trans- actions on Signal Processing, 2010, 98(6): 1058-1076.
  • 6TAUBOCK G, HLAWATSCH F, EIWEN D, RAUHUT H. Compressive estimation of doubly selective channelsin multicarrier systems: leakage effects and sparsity- enhancing processing [J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 255-271.
  • 7KHOJASTEPOUR M A, GOMADAM K, WANG X D. Pilot-assisted channel estimation for MIMO OFDM systems using theory of sparse signal recovery [C]// IEEE International Conference on Acoustics, Speech and Signal Processing, 2009: 2693-2696.
  • 8PENG Yuexing, YANG Xiao, YANG Xiaofeng, WANG Wenbo, Wu Bin. Compressed MIMO-OFDM chan- nel estimation [C]//12th IEEE International Con- ference on Communication Technology, 2010: 1291- 1294.
  • 9ZHAN(] W, XIA X, CHING P C. Optimal train- ing and pilot pattern design for OFDM systems in Rayleigh fading [J]. IEEE Transactions on Broad- casting, 2006, 52(4): 505-514.
  • 10HE Xueyun, SONG Rongfang. Pilot pattern optimiza- tion for compressed sensing based sparse channel es- timation in OFDM systems [C]//Wireless Commu- nications and Signal Processing (WCSP), 2010: 1-5.

共引文献10

同被引文献81

引证文献9

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部