期刊文献+

基于DTW-MST模型的全球股市网络拓扑结构研究 被引量:3

Study on the topology structure of global stock markets networks based on DTW-MST models
下载PDF
导出
摘要 基于次贷与欧债危机下的全球最具代表性的40个股指日收益率,运用DTW(动态时间规整法)和MST(最小生成树)构建和解析了全球股市关联网络及其动态拓扑结构.结果表明:DTW法解决了非线性、长度不一致的数据间的相关性测度问题;全球股指显示出较强的地理聚集性,金融危机发生时的股指网络变得相对更松散,股指间的关联性更弱,网络结构性更差,但欧债危机之后的网络结构比次贷危机之后的要好;金融危机后,股指间的关联性在增大,股指网络的中心聚集性在增强,美国股市的影响力有所削弱,中国股市一直处于边缘地位. Based on the global most representative 40 stock index daily yields under the subprime mortgage and the European debt crisis,the DTW and MST is applied to construct and analyze the correlation network of global stock markets and its dynamic topology structure.The results show that:the dynamic time warping method may solve the problem of correlation measurement between the data of nonlinear and different lengths;the global stock indexes show stronger geographical aggregation,the stock indexes networks became relatively looser when the financial crisis occur,the correlation between stock indexes is weaker,the network has worse structure,but the network after the European debt crisis is better structure than it after the subprime crisis;after the financial crisis,the correlation between the stock indexes is increasing,the central aggregation of stock index networks is strengthening,the influence of stock markets in America may have been weakened,China stock market has long stayed in peripheral status.
作者 余海华 YU Haihua(School of Mathematics and Statistics,Minnan Normal University,Zhangzhou,Fujian 363000,China)
出处 《闽南师范大学学报(自然科学版)》 2020年第4期81-88,共8页 Journal of Minnan Normal University:Natural Science
基金 福建省中青年教师教育科研项目(JT180315)。
关键词 次贷危机 欧债危机 DTW法 MST法 全球股市网络 拓扑结构 subprime crisis European debt crisis DTW MST global stock network topology structure
  • 相关文献

参考文献4

二级参考文献28

  • 1Li P, Wang B H. Extracting hidden fluctuation patterns of Hang Seng stock index from network topologies [ J ]. Physica A: Statistical Mechanics and its Applications, 2007,378(2) :519 -526.
  • 2Nobi A, Maeng S E , Ha G G, Lee J W. Effects of glob- al financial crisis on network structure in a local stock market, Physica A ,2014,407:135 - 143.
  • 3Chert H, Mai Y, Li S - P. Analysis of network clustering behavior of the Chinese stock market,Physica A,2014, 414:360 - 367.
  • 4Raphael H. Heiberger. Stock network stability in times of crisis, Physica A ,2014,393:376 - 381.
  • 5N. Huyghebaert, L. Wang,The co - movement of stock markets in East Asia: Did the 1997 - 1998 Asian finan- cial crisis really strengthen stock market integration? [ J]. China Econ. ,2010,21:98 - 112.
  • 6Yang R, Li X Y, Zhang T. Analysis of linkage effects a- mong industry sectors in China's stock market before and after the financial crisis,Physica A,2014,411:12 -20.
  • 7Stefan Ly6csa, Tom6 V2C, rost, Eduard Baumhl. Stock market networks: The dynamic conditional correlation approach, Physica A ,2012,391:4147 - 4158.
  • 8Fu T C. A review on time series data mining[J]. Engineering Applica- tions of Artificial Intelligence, 2011, 24(1).
  • 9Esling P, Agon C, Time-series data mining[J]. ACM Computing Sur- vey, 2012, 45(1).
  • 10黄玮强,庄新田,姚爽.中国股票关联网络拓扑性质与聚类结构分析[J].管理科学,2008,21(3):94-103. 被引量:63

共引文献13

同被引文献16

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部