期刊文献+

轴对称矢量喷管空间运动学建模仿真 被引量:6

Modeling and Simulation of Spatial Kinematics of Axisymmetric Vectoring Nozzle
下载PDF
导出
摘要 为了获得轴对称矢量喷管动态偏转轨迹的最优路径,提出了1种基于运动学位移解算的解决方法。通过空间运动约束分析建立了描述轴对称矢量喷管复杂空间运动的平衡方程,经解算建立了描述矢量角与作动筒位移映射关系的2维插值模型。基于运动学模型仿真中喷管喉道截面与出口截面几何中心距离不变的结论,建立矢量角与中心坐标的简化关系并设计各控制周期下矢量角动态指令偏转规律。仿真结果表明:该解决方案基本可以保证动态偏转下矢量轨迹满足预期要求。 In order to obtain the optimal path of the dynamic deflection trajectory of axisymmetric vectoring nozzle,a solution was proposed based on kinematic displacement calculation.An equilibrium equation describing complex spatial motion of axisymmetric vectoring nozzle was established by space motion constraint analysis.A 2-D interpolation model describing the mapping relationship between vector angle and actuator displacement was established by solving the equations.Based on the conclusion that the geometric center distance between nozzle throat section and outlet section was constant in kinematics model simulation,the simplified relationship between vector angle and center coordinate was established and the deflection law of vector angle dynamic command was designed in each control cycle.The simulation results show that the solution can basically ensure that the vector trajectory meets the expected requirements under dynamic deflection.
作者 柳亚冰 符大伟 蔡常鹏 孙丰勇 张海波 LIU Ya-bing;FU Da-wei;CAI Chang-peng;SUN Feng-yong;ZHANG Hai-bo(AECC Control System Institute,WuxiJiangsu 214063,China;College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
出处 《航空发动机》 北大核心 2020年第6期34-40,共7页 Aeroengine
基金 国家自然科学基金(51576096) 中央高校科研业务费重大人才培育项目(NF2018003)资助。
关键词 轴对称矢量喷管 空间运动学建模 动态偏转轨迹 偏转规律 航空发动机 axisymmetric vectoring nozzle spatial kinematics modeling dynamic deflection trajectory deflection law aeroengine
  • 相关文献

参考文献9

二级参考文献47

  • 1高阳,白广忱,于霖冲.矢量喷管柔性机构运动及可靠性仿真(英文)[J].系统仿真学报,2006,18(z2):175-178. 被引量:6
  • 2陶增元,李军,程邦勤.飞机推进系统关键技术——推力矢量技术[J].空军工程大学学报(自然科学版),2000,1(2):86-90. 被引量:19
  • 3屈裕安,谢寿生,宋志平.带矢量喷管的涡扇发动机动态过程研究[J].航空动力学报,2005,20(1):29-32. 被引量:3
  • 4李晓明,伏宇.轴对称矢量喷管机构优化设计[J].燃气涡轮试验与研究,2006,19(3):1-5. 被引量:15
  • 5Hunt K H, Kinematic geometry of mechanisms [M]. Cambridge: Oxford University Press, 1978.
  • 6Bandyopadhyay S, Ghosal A. Analysis of configuration space singularities of closed loop mechanisms and parallel manipulators [J]. Mechanism and Machine Theory, 39(5): 519-544.
  • 7Chowdhury P, Ghosal A. Singularity and controllability analysis of parallel manipulators and closed-loop mechanisms[J]. Mechanism and Machine Theory, 2000, 35: 1455-1479.
  • 8LI Huade, Gosselin C M, Richard M J, et al. Analytical form of the six-dimensional singularity locus of the general Gough Stewart platform[J]. Trans. of ASME, Journal of Mechanical Design, 2006, 128(1): 279-287.
  • 9HUANG Zhen, CHEN Lihua, LI Yanwei. The singularity principle and property of stewart parallel manipulator [J]. Journal of Robotic System, 2003, 20(4): 163-176.
  • 10Innocenti C, Castelli V P. Singularity-free evolution from one configuration to another in serial and fully parallel manipulators[J]. Trans. of ASME, Journal of Mechanical Design, 1998, 120(3): 73-79.

共引文献38

同被引文献58

引证文献6

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部