摘要
设m是大于1的正整数,对于正整数n,设fm(n)是不小于a的最大m次方幂,Sm(n)是不小于n的所有正整数的m次方部分之和,文章根据连续正整数的齐次和与Bernoulli多项式之间的关系,主要研究Sm(n)的一般性计算公式及其渐近性.
let m be a positive integer with m>1.For any positive integers a and n,let fm(a)denote the maximum mth power number which is not smaller than a,and let Sm(n)denote the sum of fm(a).According to the relation between the homogeneous sums of continued positive integers and Bernoulli polynomials,a computational formula of Sm(n)and an asymptotic property of Sm(n)are the research of this paper.
作者
朱萍萍
洪海燕
ZHU Ping-ping;HONG Hai-yan(Jianghuai College of Anhui University,Hefei 230039,China)
出处
《通化师范学院学报》
2020年第12期28-30,共3页
Journal of Tonghua Normal University
基金
安徽省级质量工程项目(2017zhkt036).