期刊文献+

包含Bernoulli多项式的正整数的m次方部分之和

The Sum of m^th Power Parts of Continued Positive Integers Containing Bernoulli Polynomials
下载PDF
导出
摘要 设m是大于1的正整数,对于正整数n,设fm(n)是不小于a的最大m次方幂,Sm(n)是不小于n的所有正整数的m次方部分之和,文章根据连续正整数的齐次和与Bernoulli多项式之间的关系,主要研究Sm(n)的一般性计算公式及其渐近性. let m be a positive integer with m>1.For any positive integers a and n,let fm(a)denote the maximum mth power number which is not smaller than a,and let Sm(n)denote the sum of fm(a).According to the relation between the homogeneous sums of continued positive integers and Bernoulli polynomials,a computational formula of Sm(n)and an asymptotic property of Sm(n)are the research of this paper.
作者 朱萍萍 洪海燕 ZHU Ping-ping;HONG Hai-yan(Jianghuai College of Anhui University,Hefei 230039,China)
出处 《通化师范学院学报》 2020年第12期28-30,共3页 Journal of Tonghua Normal University
基金 安徽省级质量工程项目(2017zhkt036).
关键词 连续正整数 m次方部分和 BERNOULLI多项式 continued positive integers mth power part Bernoulli polynomials
  • 相关文献

参考文献4

二级参考文献16

  • 1郭金保,郭永平.正整数的立方数数列的求和[J].延安大学学报(自然科学版),2005,24(4):3-4. 被引量:4
  • 2陈宝安.关于正整数的平方部分数列[J].西北大学学报(自然科学网络版),2003,(4):1-1.
  • 3F.Smarandache.Only problems,not Solutions[M].Chicago:Xiquan Publ.House,1993,35.
  • 4APOSTOL T M.Introduction to Analytic Number Theory[M].New York:Springer-Verlag,1976.
  • 5SMARANDACHE F.Sequences of Number Involving in Unsolved Problem[M].USA:High American Press,2006.
  • 6SMARANDACHE F.Only Problems,Not Solutions[M].Chicago:Xiquan Publishing House,1993.
  • 7ZHANG Wenpeng.Research on Smarandache Problems in Number Theory(Collected Papers)[M].USA:High American Press,2004.
  • 8ZHANG Wenpeng.Research on Smarandache Problems in Number Theory(Vol.Ⅱ)[M].USA:High American Press,2005.
  • 9YI Yuan,KANG Xiaoyu.Research on Smarandache Problems[M].USA:High American Press,2006.
  • 10LIU Huaning,GAO Jing.Research on Smarandache Problems[M].USA:High American Press,2011.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部