期刊文献+

基于变分自编码器的异常小区检测

An Abnormal Cell Detection Method Based on VAE
下载PDF
导出
摘要 为了解决移动无线网高维度性能指标异常样本的标注问题,提出一种基于变分自编码器VAE的异常小区检测方法。该方法利用异常小区性能KPI数据在通过变分自编码器编码与解码过程中所产生的较大波动来实现异常检测。实验结果表明,该方法在样本不平衡的情况下,通过合理设置重构误差阈值,能准确地检测出异常小区,实现异常小区的机器判读。 In order to solve the problem of labeling abnormal samples of high-dimensional performance indicators in mobile wireless networks, this paper proposes an abnormal cell detection method based on variational auto-encoder(VAE). This method realizes the abnormal detection via the large fluctuation caused by the output from the VAE when the performance KPI data in abnormal cell pass through the encoding and decoding process. The experimental results show that the method can detect abnormal cells accurately and realize machine interpretation of abnormal cells by setting the reasonable reconstruction error threshold under the condition of unbalanced samples.
作者 滕祖伟 周杰华 TENG Zuwei;ZHOU Jiehua(China Unicorn Hubei Branch,Wuhan 430020,China)
出处 《移动通信》 2020年第12期51-54,共4页 Mobile Communications
关键词 异常小区检测 变分自编码器 重构误差 样本不平衡 abnormal cell detection variational auto-encoder reconstruction error unbalanced samples
  • 相关文献

参考文献3

二级参考文献51

  • 1BENGIO Y, DELALLEAU O. On the expressive power of deep archi- tectures[ C ]//Proc of the 14th International Conference on Discovery Science. Berlin : Springer-Verlag, 2011 : 18 - 36.
  • 2BENGIO Y. Leaming deep architectures for AI[ J]. Foundations and Trends in Machine Learning ,2009,2 ( 1 ) : 1-127.
  • 3HINTON G,OSINDERO S,TEH Y. A fast learning algorithm for deep belief nets [ J ]. Neural Computation ,2006,18 (7) : 1527-1554.
  • 4BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Proc of the 12th Annual Conference on Neural Information Processing System. 2006:153-160.
  • 5LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning ap- plied to document recognition[ J]. Proceedings of the iEEE, 1998, 86( 11 ) :2278-2324.
  • 6VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[ C ]//Proc of the 25th International Conference on Machine Learning. New York: ACM Press ,2008 : 1096-1103.
  • 7VINCENT P, LAROCHELLE H, LAJOIE I, et aL Stacked denoising autoencoders:learning useftd representations in a deep network with a local denoising criterion [ J ]. Journal of Machine Learning Re- search ,2010,11 ( 12 ) :3371-3408.
  • 8YU Dong, DENG Li. Deep convex net: a scalable architecture for speech pattern classification [ C]//Proc of the 12th Annual Confe-rence of International Speech Comunication Association. 2011 : 2285- 2288.
  • 9POON H, DOMINGOS P. Sum-product networks:a new deep architec- ture[ C ]//Proc of IEEE Intemational Conference on Computer Vi- sion. 2011:689-690.
  • 10BENGIO Y,LECUN Y. Scaling learning algorithms towards AI[ M]// BOTTOU L,CHAPELLE O, DeCOSTE D,et al. Large-Scale Kernel Machines. Cambridge: MIT Press ,2007:321-358.

共引文献636

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部