摘要
根据乘法群上的傅里叶变换理论框架,研究了一类三角和,并揭示了这类三角和与许多数论量(例如高斯和、虚二次域类数和伯努利数)之间的有趣联系.
Based on the Fourier transform on the multiplicative group Z×(m), we study a class of trigonometric sums and reveal interesting connections between these sums and number theoretic quantities,such as Gauss sums, the class number of imaginary quadratic fields, and the Bernoulli number.
作者
沈力健
SHEN Lichien(Department of Mathematics,University of Florida,Gainesville FL 32611-8105,USA)
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2020年第6期1-15,共15页
Journal of East China Normal University(Natural Science)
基金
The author would like to thank Dandan Chen for the assistance in reformatting the original manuscript to the style of the journal.