期刊文献+

基于SERS纳米探针的细胞内硝基还原酶检测 被引量:2

Detection of Nitroreductase in Living Cells Based on Surface Enhanced Raman Scattering Nanoprobes
下载PDF
导出
摘要 在缺氧的肿瘤细胞内,硝基还原酶(NTR)通常过表达且其含量高低与缺氧程度呈正相关,因此开发高选择性检测NTR的方法对早期肿瘤诊断至关重要.本文通过修饰对硝基苯硫酚(p⁃NTP)到金纳米粒子(Au NPs)表面构建了一种表面增强拉曼散射(SERS)探针.在缺氧条件下,以还原型烟酰胺腺嘌呤二核苷酸(NADH)作为电子供体,NTR可催化还原芳香硝基为芳香胺,导致纳米探针的SERS光谱发生变化,从而实现NTR的高选择性检测,检出限低至18 ng/mL.该探针毒性低、生物兼容性好,可用于缺氧条件下A549细胞内的NTR分析,为肿瘤细胞的缺氧现象评估提供了一种有效的策略. The expression of nitroreductase(NTR)is closely related to the degree of hypoxic in anoxic tumor cell.Therefore,the development of a highly selective method for the detection of NTR is of great significance for the diagnosis and treatment of cancer.We functionalized p-NTP onto the surface of Au NPs to prepare a highly sensitive SERS probe.Under hypoxic conditions,the reduced nicotinamide adenine dinucleotide(NADH)is used as an electron donor,and NTR can catalyze the reduction of a nitroaromatic compound to an aromatic amine,which results in the SERS spectrum change of the nanoprobe,thus realizing the detection of NTR.The detection limit of the nanoprobe for NTR can reach 18 ng/mL.The probe exhibits low toxicity and good biocompatibility.It can be used for SERS analysis of A549 cells under hypoxia conditions and reveals that the concentration of nitroreductase in tumor cells increases with the increase of hypoxia degree,which pro⁃vides an effective strategy for evaluating hypoxia in tumor cells.
作者 郑有为 田菲 张倩 徐迪 杨国海 渠陆陆 ZHENG Youwei;TIAN Fei;ZHANG Qian;XU Di;YANG Guohai;QU Lulu(School of Chemistry and Materials Science,Jiangsu Normal University,Xuzhou 221116,China)
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2020年第12期2742-2748,共7页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:21974055)资助.
关键词 缺氧现象 硝基还原酶 高选择性 细胞 Hypoxic Nitroreductase Highly selectivity Cell
  • 相关文献

参考文献5

二级参考文献125

  • 1蒋芸,崔颜,姚建林,顾仁敖.表面增强拉曼光谱研究以4,4'-联吡啶为标记分子的免疫检测[J].化学学报,2006,64(3):240-244. 被引量:10
  • 2Yamaguehi K. , Inoue T. , Fujii M. , et al.. Nature[J] , 2008, 229(3) : 545-550.
  • 3Yang R. G. , Chen G. , Dresselhaus M. S.. Nano Lett. [J], 2005, 5(6) : 1111-1115.
  • 4Porter M. D. , Lipert R. J. , Siperko L. M. , et al.. Chem. Soc. Rev. [J], 2008, 37:1001-1011.
  • 5Graham D. , Faulds K.. Chem. Soc. Rev. [J], 2008, 37:1042-1051.
  • 6Nie S. M. , Emory S. R.. Science[J], 1997, 275:1102-1106.
  • 7Tian J. H. , Liu B. , Tian Z. Q.. J. Am. Chem. Soc. [J] , 2006, 128(46) : 14748-14749.
  • 8Xu H. X. , Kall M.. Chem. Phys. Chem. [J], 2003, 4:1001-1005.
  • 9Wei H. , Hao F. , Huang Y. Z. , et al.. Nano Lett. [J] , 2008, 8(8) : 2497-2502.
  • 10Moskovits M.. Rev. Mod. Phys. [J] , 1985, 57:783-826.

共引文献7

同被引文献10

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部