期刊文献+

邻域自适应的微分变异约束分数阶粒子群优化

Constrained fractional-order PSO with self-adaptiveneighbors and differential mutators
下载PDF
导出
摘要 分数阶粒子群算法(FOPSO)是一种具有路径记忆的改进型粒子群优化算法。在多峰约束优化问题中,针对FOPSO易于早熟和依赖于初始参数的问题,文中提出了一种邻域自适应的约束分数阶粒子群优化方法(NAFPSO)。在算法中,依据进化状态来动态调整邻域拓扑从而更新粒子位置和速度,以提高可行解的全局寻优能力和收敛速度;采用带惩罚因子的罚函数约束处理技术,迫使粒子趋向可行区域;设计了微分变异策略以增加种群多样性,增强粒子逃脱局部最优的能力。用9个约束优化基准函数实验验证了NAFPSO的有效性和收敛性能,并应用于2个约束工程设计问题,结果表明,提出的算法寻优能力强、收敛快、精度高、稳定性好,可用于有效地解决复杂的约束工程设计优化问题。 Fractional order particle swarm optimization(FOPSO)is an improved particle swarm optimization algorithm with trajectories memory.In the multimodal constrained optimization problem,a neighborhood adaptive constrained fractional order particle swarm optimization(NAFPSO)method was proposed to solve the problem that FOPSO was easy to premature and sensitive to the initial parameters.In the algorithm,the positions and velocities of particles in the swarm were updated by the neighborhood topologies adjusted dynamically according to the evolution state of particles,so as to improve the global optimizing ability and convergence speed.Meanwhile,the penalty function with penalty factor was employed to force the particles to approach the feasible area.The differential mutation strategy was designed to increase the swarm diversity and enhance the particle ability to escape from local optimum.9 constrained benchmarks were used to test the effectiveness and convergence performance of the proposed algorithm,and then it was applied to 2 constrained engineering design problems.Comparison analysis shows that the proposed algorithm has higher optimization ability,faster convergence,higher accuracy and better stability,and can be applied to solve complex constrained engineering design optimization problems effectively.
作者 苏守宝 李智 何超 SU Shoubao;LI Zhi;HE Chao(School of Computer,Jiangsu University of Science and Technology,Zhenjiang 212003,Jiangsu,P.R.China;Jiangsu Key Laboratory of Data Science and Smart Software,Jinling Institute of Technology,Nanjing 211169,P.R.China)
出处 《重庆大学学报》 EI CAS CSCD 北大核心 2020年第11期84-98,共15页 Journal of Chongqing University
基金 国家自然科学基金资助项目(61375121,41801303) 金科院高层次引进人才科研项目(jit-rcyj-201505,D2020005) 江苏省高校省级自然科学研究重大项目(17 KJA520001,18KJA520003) 江苏高校优秀科技创新团队项目(苏教科[2017]6号).
关键词 邻域拓扑 分数阶粒子群优化 自适应 约束优化 微分变异 neighborhood topology fractional order particle swarm optimization(FOPSO) self-adaptive constrained optimization differential mutation
  • 相关文献

参考文献6

二级参考文献42

  • 1赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 2孟红记,郑鹏,梅国晖,谢植.基于混沌序列的粒子群优化算法[J].控制与决策,2006,21(3):263-266. 被引量:76
  • 3Kennedy J,Eberhart R C. Particle swarm optimization [C]//Proc ICNN'95. Piscataway, NJ ; IEEE Press, 1995 : 1 942 —1948.
  • 4Cabrera J C F. Handling constraints in particle swarmoptimization using a small population size [C]//Proc 6thMICAI. Aguascalientes, Mexico: IEEE Press, 2007: 41-51.
  • 5Pulido (j T,Coello C A C. A constraint-handling mechanismfor particle swarm optimization [C]//Proc CEC,04.Portland, USA: IEEE Press, 2004 : 1396 - 1403.
  • 6Efren M M, Coello C A C. A simple multimemberedevolution strategy to solve constrained optimization problems[J]. IEEE Transactions on Evolutionary Computulion ,2005, 9(1) : 1 - 17.
  • 7Runanarsson T P,Yao X. Stochastic ranking for constrainedevolutionary optimization [J]. IEEE Transactiofis onEvolutionary Computation . 2000,4(3): 248 - 254.
  • 8Storn R, Price K. Differential evolution: A simple andefficient heuristic for global optimization over continuousspaces [J]. Journal of Global Optimization , 1997,11(4):341 - 359.
  • 9Ratnaweera A, Halgamuge S,Watson H. Self-organizinghierarchical particle swarm optimizer with time-varyingacceleration coefficients [J]. IEEE Tran.sacl ions onEvolutionary Computation ^ 2004 , 8(3) : 240 - 255.
  • 10李盼池.基于量子位Bloch坐标的量子遗传算法及其应用[J].控制理论与应用,2008,25(6):985-989. 被引量:29

共引文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部