期刊文献+

基于水平集函数的区间不确定性结构可靠性拓扑优化 被引量:1

Reliability-Based Topology Optimization of Structures with Interval Parameters Using the Level Set Function
下载PDF
导出
摘要 针对输入参数具有区间不确定性的结构可靠性拓扑优化问题,充分利用水平集函数(LSF)便于追踪固定网格上的结构演变、裕量与不确定性量化(QMU)方法易于表征结构可靠性的优点,建立了考虑区间不确定性的基于LSF和QMU的结构可靠性拓扑优化模型。该模型以紧支径向基函数(CSRBF)的插值系数为设计变量,以结构最小应变能为目标,以结构体积为普通约束,以位移的QMU置信因子为可靠性约束,并使用移动渐近线算法(MMA)进行优化求解。通过经典的悬臂梁算例证明在输入参数具有区间不确定性时,文中所提方法的可行性和有效性。 To study the reliability-based topology optimization with interval uncertainties,making full use of the advantages of the Level Set Function(LSF)in tracking structural evolution on a fixed grid,and the advantages of the Quantification of Margins and Uncertainties(QMU)method in characterizing structural reliability,a reliability-based topology optimization model based on LSF and QMU is established.In this model,the interpolation coefficient of the compactly supported radial basis function(CSRBF)are taken as design variables,the minimum strain energy of the structure is taken as objective,the structure volume is taken as a general constraint,the QMU confidence factor of displacement is taken as a reliability constraint,and the optimal problem is solved by the Method of Moving Asymptotes(MMA).A c lassic cantilever beam example is demonstrated to the feasibility and effectiveness of the proposed approach.
作者 陆小华 李贵杰 魏发远 LU Xiao-hua;LI Gui-jie;WEI Fa-yuan(Institute of Systems Engineering,China Academy of Engineering Physics,Sichuang Mianyang 621999,China)
出处 《机械设计与制造》 北大核心 2020年第12期78-82,共5页 Machinery Design & Manufacture
基金 科学挑战计划项目(TZ2018007) 国家自然科学基金项目(11702281) 科工局技术基础项目(JSZL20172121A001)。
关键词 区间参数 水平集函数 裕量与不确定性量化 可靠性拓扑优化 Interval Parameter Level Set Function Quantification of Margins and Uncertainties Reliability-based Topology Optimization
  • 相关文献

参考文献6

二级参考文献62

  • 1张宁,贾自艳,史忠植.使用KNN算法的文本分类[J].计算机工程,2005,31(8):171-172. 被引量:99
  • 2程耿东,张东旭.受应力约束的平面弹性体的拓扑优化[J].大连理工大学学报,1995,35(1):1-9. 被引量:86
  • 3荣见华.一种改进的结构拓扑优化水平集方法[J].力学学报,2007,39(2):253-260. 被引量:17
  • 4Liu B D, Iwamura K. Fuzzy programming with fuzzy deeisions and fuzzy simulation-based genetic algorithm [J]. Fuzzy Sets and Systems, 2001, 122: 253-262.
  • 5Charnes A, Cooper W W. Chance-constrained programing[J]. Management Science, 1959, 6 (1) 73-79.
  • 6Abbas M, Bellahcene F. Cutting plane method for multiple objective stochastic integer linear programming[J]. European Journal of Operational Research, 2006,168(3) :967-984.
  • 7Tong S C. Interval number and fuzzy number linear programming[J]. Fuzzy Sets and Systems, 1994, 66 (3) : 301-306.
  • 8Chanas S, Kuchta D. Multiobjective programming in optimization of interval objective functions a generalized approach[J]. European Journal of Operational Research, 1996, 94: 594-598.
  • 9Sengupta A, Pal T K, Chakraborty D. Interpretation of inequality constraints involving interval coefficients and a solution to interval linear programming[J]. Fuzzy Sets and Systems, 2001, 119: 129-138.
  • 10Jiang C, Han X, Liu G R. A nonlinear interval number programming method for uncertain optimization problems[J]. European Journal of Operational Research, 2008,188(1) : 1-13.

共引文献46

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部