摘要
现有的网络表示学习方法缺少对网络中隐含的深层次信息进行挖掘和利用。对网络中的潜在信息做进一步挖掘,提出了潜在的模式结构相似性,定义了网络结构间的相似度分数,用以衡量各个结构之间的相似性,使节点可以跨越不相干的顶点,获取全局结构上的高阶相似性。利用深度学习,融合多个信息源共同参与训练,弥补随机游走带来的不足,使得多个信息源信息之间紧密结合、互相补充,以达到最优的效果。实验选取Lap、DeepWalk、TADW、SDNE、CANE作为对比方法,将3个真实世界网络作为数据集来验证模型的有效性,进行节点分类和链路重构的实验。在节点分类中针对不同数据集和训练比例,性能平均提升1.7个百分点;链路重构实验中,仅需一半维度便实现了更好的性能,最后讨论了不同网络深度下模型的性能提升,通过增加模型的深度,节点分类的平均性能增加了1.1个百分点。
Due to the lack of deep-level information mining and utilization in the existing network representation learning methods,the potential pattern structure similarity was proposed by further exploring the potential information in the network.The similarity score between network structures was defined to measure the similarity between various structures so that nodes could cross irrelevant vertices to obtain high-order similarities on the global structure.In order to achieve the best effect,deep learning was used to fuse multiple information sources to participate in training together to make up for the deficiency of random walks.In the experiment,Lap,DeepWalk,TADW,SDNE and CANE were selected as comparison methods,and three real-world networks were used as data sets to verify the validity of the model,and experiments of node classification and link reconstruction are carried out.In the node classification,the average performance is improved by 1.7 percentage points for different datasets and training proportions.In the link reconstruction experiment,only half the dimension is needed to achieve better performance.Finally,the performance improvement of the model under different network depths was discussed.By increasing the depth of the model,the average performance of node classification increased by 1.1 percentage points.
作者
邬少清
董一鸿
王雄
曹燕
辛宇
WU Shaoqing;DONG Yihong;WANG Xiong;CAO Yan;XIN Yu(Faculty of Electrical Engineering and Computer Science,Ningbo University,Ningbo 315211,China)
出处
《电信科学》
2020年第12期20-32,共13页
Telecommunications Science
基金
浙江省自然科学基金资助项目(No.LY20F020009,No.LZ20F020001)
国家自然科学基金资助项目(No.61602133)
宁波市自然科学基金资助项目(No.202003N4086,No.2019A610093)。
关键词
网络表示学习
图嵌入
属性网络
结构信息
network representation learning
graph embedding
attribute network
structure information