期刊文献+

结合拉普拉斯特征映射的权重朴素贝叶斯高光谱分类算法 被引量:3

A Weighted Naive Bayes Hyperspectral Classification Algorithm Combined with Laplacian Eigen Mapping
下载PDF
导出
摘要 高光谱遥感可以得到更精确与丰富的遥感信息,因此涵盖了各国家的航空、航天以及小范围的地面观测的多个层级与环节,在对地观测遥感领域占有不可取代的地位。但高光谱数据集往往非常庞大,且包含冗余信息,为后续处理带来了不便。该研究选用拉普拉斯特征映射对高光谱数据降维与特征提取,并提出了一种权重朴素贝叶斯分类算法。通过奖励权重的方法对经典朴素贝叶斯分类器进行了改进,利用公开数据对算法进行验证,判别地物信息准确率达到92.7%,相比于传统方法有了大幅度的提高。 Hyperspectral remote sensing,which plays an important role in the field of earth observation and remote sensing,could be used to obtain more accurate and rich remote sensing information,thus covering various levels and full links of the various countries′aerial,spaceflight and small range of ground observation.However,hyperspectral data sets are often very large and contain redundant information,which brings inconvenience to subsequent processing.In this study,Laplacian Eigen mapping was used to reduce the dimension and fulfil the feature extraction of hyperspectral data.Then a weighted naive Bayes classification algorithm was proposed,while the classic naive Bayes classifier was improved by the method of rewarding weight.The algorithm was verified by the open source data.Results indicated that the accuracy for the proposed method in identification of the object information reached to 92.7%,which was greatly improved compared with that for the traditional method.
作者 李响 吕勇 LI Xiang;LÜYong(College of Instrument Science and Optoelectronics Engineering,Beijing Information Science and Technology University,Beijing 100192,China)
出处 《分析测试学报》 CAS CSCD 北大核心 2020年第10期1293-1298,共6页 Journal of Instrumental Analysis
基金 “十三五”装备预研共用技术和领域基金(41414050205) 国防军工重点计量科研项目(JSJL2019208B001)。
关键词 高光谱 特征提取 目标识别 朴素贝叶斯分类算法 拉普拉斯特征映射 hyperspectral feature extraction target recognition naive Bayes classification algorithm Laplacian Eigen mapping
  • 相关文献

同被引文献35

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部