期刊文献+

铸态粗晶Ti-5553钛合金的高温变形行为与机理 被引量:1

Hot Deformation Behavior and Mechanism of As-cast Ti-5553 Alloy with Coarse Grains
原文传递
导出
摘要 借助Gleeble-3800热模拟试验机研究了铸态粗晶Ti-5553合金在温度700~1100℃、应变速率0.001~10 s^-1条件下的高温变形行为。结果表明,合金的流变应力对变形温度和应变速率都有强敏感性,流变软化过程也随变形参数的改变呈现出不同的模式。通过经典动力学模型,建立了合金高温变形的本构关系和激活能分布图,基于动态材料模型构建了合金的热加工图并实现了对不同加工区间变形机制的识别。合金在低温区(700℃)和高应变速率区(>1 s^-1)均展现出失稳变形的特征,包括外部开裂、绝热剪切带、局部流变等机制,在实际加工中应对这些加工区域进行规避。合金在800℃及中低应变速率(<0.1 s^-1)变形下的主导机制为α相的动态析出,在中高温(900~1100℃)及中低应变速率变形下的主导机制为动态回复与动态再结晶的结合。此外,合金在高温较低应变速率(1100℃/0.01 s^-1)条件的变形中表现出大范围动态再结晶的行为特点并伴随稳定的流变软化,因此此条件附近的参数区间被认定为该合金的最优加工窗口,应在实际加工中给予优先考虑。 The hot deformation behavior of as-cast Ti-5553(Ti-5Al-5Mo-5V-3Cr)alloy with coarse grain was investigated in the temperature range of 700~1100℃and strain rate range of 0.001~10 s^-1 by Gleeble-3800 thermal physical simulator.The results show that the flow stress is sensitive to both temperature and strain rate,and the flow curves display various softening modes under different conditions.The activation energy map and constitutive relationship are constructed for the alloy,and the average deformation activation energy is calculated as 447.2 kJ/mol.The hot processing map is established based on the dynamic materials model with the identification of underlying mechanisms at various processing regions.Two peak domains are identified in the hot processing map:800~975℃/0.001~0.01 s^-1 and 1000~1100℃/0.01~0.1 s^-1,and the flow instability region locates at the region where the strain rate is higher than 1 s^-1.External cracking,adiabatic shear banding and/or flow localization are observed in the region of low-temperature deformation and flow instability,and these conditions should be avoided in actual processing.The mechanism at the peak efficiency domain is dynamic recovery(DRV)or the combination of DRV and dynamic recrystallization(DRX),and the region with the occurrence of extensive DRX is recommended as the optimal processing window for the alloy at high temperature about 1100℃and medium-low strain rate about 0.01 s^-1.
作者 赵秦阳 陈永楠 徐义库 Leandro Bolzoni Fei Yang Zhao Qinyang;Chen Yongnan;Xu Yiku;Leandro Bolzoni;Fei Yang(Chang’an University,Xi’an 710064,China;University of Waikato,Hamilton 3240,New Zealand)
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2020年第11期3653-3661,共9页 Rare Metal Materials and Engineering
基金 New Zealand Ministry of Business,Innovation and Employment(UOWX1402)。
关键词 Ti-5553合金 高温变形行为 本构关系 加工图 变形机制 Ti-5553 alloy hot deformation constitutive relationship processing map deformation mechanism
  • 相关文献

参考文献1

二级参考文献17

  • 1WEISS I, SEMIATIN S L. Thermamechanical processing of beta titanium alloys- an overview[J]. Mater Sci Eng A, 1998, A243:46-65.
  • 2FROES F H. BOMBERGER H B. The beta titanium alloys[J] JOM,1985(7): 28-37.
  • 3MAEDA T, OKADA M. Improvement of styength and fracture toughness in isothermally forged Ti-10V-2Fe-3Al[A]. Titanium'95:Science and Technology(Vol. Ⅱ)[C]. Birmingham, 1996. 948-955.
  • 4DUERIG T W, TERLINDE T G. WILLIAMS J C, Phase transformation and tensile properties of Ti-10V-2Fe-3Al[J]. Metall Trans A. 1980 A11(12): 1987-1998.
  • 5TERLINDE T G. DUERIG T W, WILLIAMS J C. Microstructure,tensile deformation, fracture in aged Ti-10V-2Fe-3Al[J]. Metall Trans A, 1983. A14(10): 2101-2115.
  • 6BOZZINI B. CERRI E. Short communication numerical reliability of hot working processing maps[J]. Mster Sci Eng A, 2002, A328:344-347.
  • 7SEMIATIN S L, SEETHARAMAN V, WEISS I. The thermamechanical processing of alpha/beta titanium alloys[J]. JOM.1997[7]: 33-58.
  • 8MORGAN G C, HAMMOND C, Superplastic deformation properties of β-Ti alloys [J]. Mater Sci Eng. 1987,86:159-177.
  • 9PRASAD Y V R K, SESHACHARYULU T, MEDEIORS S C,FRAZIER W O. Effect of preform microstructure on the hot working mechanisms in ELI grade Ti-6Al-4V: transformed β v.equiaxed(α-β)[J]. Mater Sci Technol, 2000,16:511-516.
  • 10GRIFFITHS P, HAMMOND C. Superplasticity in large grained materials[J]. Acta Metall, 1972, 20:935-945.

共引文献8

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部