期刊文献+

大数据处理技术在高校学生管理中的应用研究 被引量:6

Application of Big Data Processing Techniques in the Management of College Students
下载PDF
导出
摘要 以高校各个功能区域为采样点,采集大学生动态数据,用大数据处理方法得出时刻数据、时段数据和乖离率的趋势图,分析趋势图数据指标,用相应的指数配合人才培养计划,以指导高校学生管理部门实现对学生的点数据、线数据和面数据的课内、课外时间段的管理,使高校能全面掌握学生信息,做到精准定位学情,从而使教育教学管理科学化。 College students are the backbone of our country.The cultivation of college students is related to the future of our motherland.Colleges and universities should train students comprehensively,accurately and individually.This paper introduces the big data processing methods of time data,hour data,day data,N day data and bias,and uses these methods to process students'personal data,class data and grade data respectively,so as to fully grasp the dynamic data of students separately and comprehensively,and realize the all-round and accurate training of students.
作者 陈辉 CHEN Hui(Huainan Vocational Technical College,Huainan Anhui 232001)
出处 《淮南职业技术学院学报》 2020年第6期63-66,共4页 Journal of Huainan Vocational Technical College
基金 淮南职业技术学院2018年自然科学研究重点项目“大数据处理技术在高校学生管理中的应用研究”(项目编号:HKJ18-1) 2019年度安徽高校自然科学研究重点项目“大数据处理技术在高校学生管理中的应用研究”(项目编号:KJ2019A1046)。
关键词 学生培养 大数据处理 精细培养 student training big data processing accurate training
  • 相关文献

参考文献3

二级参考文献16

  • 1王永利,徐宏炳,董逸生,钱江波,刘学军.基于低阶近似的多维数据流相关性分析[J].电子学报,2006,34(2):293-300. 被引量:12
  • 2贾永堂.浅论我国大学管理人员的专业意识[J].高等教育研究,2001,(4).
  • 3Melek W W, Lu Z, Kapps A, et al. Comparison of trend detection algorithms in the analysis of physiological time-series data [J]. IEEE Trans on Biomed Engineering, 2005, 52(4):639-651.
  • 4Beringer J, Hullermeier E. Online clustering of parallel data streams[J]. Data and Knowledge Engineering, 2005, 58(2): 180-204.
  • 5Koski A, Juhola M, Meriste M. Syntactic recognition of ECG signals by attributed finite automata[J]. Pattern Recognition,1995, 28(12) : 1927-1940.
  • 6Shatkay H, Zdonik S. Approximate queries and representations for large data sequences[C]. Proc of 12th IEEE Int Conf on Data Engineering. Washington: IEEE Computer Society, 1996: 546-553.
  • 7Keogh E, Chu S, Hart D, et al. Segmenting time series: A survey and novel approach[C]. Proc of IEEE Int Conf on Data Mining. Los Jose: IEEE Computer Society, 2001 : 289-296.
  • 8Sylvie C, Carlos G B, Catherine C, et al. Trends extraction and analysis for complex system monitoring and decision support[J]. Engineering Applications of Artificial Intelligence, 2005, 18(1): 21-36.
  • 9Bakshi B R, Stephanopoulos G. Representation of proeess trends - Ⅲ: Multi-scale extraction of trends from process data [J]. Computers and Chemical Engineering, 1994, 18(4). 267-302.
  • 10Vedam H, Venkatasubramanian, V, Bhalodia M. A B-spline based method for data compression, process monitoring and diagnosis [J]. Computers and Chemical Engineering, 1998, 22 (S1): 827-830.

共引文献71

同被引文献22

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部