期刊文献+

基于改进粒子滤波的锂离子电池健康状态估计 被引量:2

State of Health Estimation of Lithium-Ion Battery Based on Improved Particle Filter
下载PDF
导出
摘要 为了准确估计电池当前健康状态(SOH),提出一种基于改进粒子滤波算法的电池SOH在线评估方法。首先针对传统萤火虫优化算法的不足,提出了一种改进萤火虫算法替代传统粒子滤波的重采样,然后从锂离子电池工作时的可测参数中提取在线健康指标(HI),建立HI与SOH之间的映射模型,并将其应用于状态空间模型的观测。利用马里兰大学先进寿命周期工程中心(CALCE)公布的试验测量数据进行验证,结果表明,该方法对具有非线性和非高斯特性的锂离子电池降解过程的状态估计具有良好的适应性。 The State Of Health(SOH)estimation is one of the key functions of lithium-ion Battery Management System(BMS).In order to accurately estimate the current health state of battery,this paper proposes an improved firefly algorithm and replaces the resampling of the traditional particle filter in view of the shortcomings of the traditional firefly algorithm.And then the measurable parameters of lithium-ion battery are extracted on line health index Hi,the mapping model between Health Index(HI)and battery SOH is established and applied to the observation of state space model.An on-line evaluation method of battery SOH based on improved particle filter algorithm is proposed.Finally,based on a set of experimental data of battery capacity published by the University of Maryland Center for Advanced Life Cycle Engineering(CALCE),it is proved that the method has good adaptability to the degradation process of lithium-ion batteries with nonlinear and non-Gaussian characteristics.
作者 徐超 李立伟 杨玉新 Xu Chao;Li Liwei;Yang Yuxin(School of Electrical Engineering,Qingdao University,Qingdao 266071;Weihai Innovation Institute,Qingdao University,Qingdao 266071;Library,Qingdao University,Qingdao 266071)
出处 《汽车技术》 CSCD 北大核心 2020年第12期19-24,共6页 Automobile Technology
基金 山东省科技发展计划项目(2011GGB01123) 山东省重点研发计划项目(2017GGX50114)。
关键词 锂离子电池 SOH估计 粒子滤波算法 萤火虫算法 健康指标 Lithium-ion battery SOH estimation Particle filter algorithm Firefly algorithm Health indicators
  • 相关文献

参考文献10

二级参考文献93

  • 1胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 2邹国辉,敬忠良,胡洪涛.基于优化组合重采样的粒子滤波算法[J].上海交通大学学报,2006,40(7):1135-1139. 被引量:43
  • 3周树德,孙增圻.分布估计算法综述[J].自动化学报,2007,33(2):113-124. 被引量:210
  • 4方正,佟国峰,徐心和.粒子群优化粒子滤波方法[J].控制与决策,2007,22(3):273-277. 被引量:95
  • 5李良群,姬红兵,罗军辉.迭代扩展卡尔曼粒子滤波器[J].西安电子科技大学学报,2007,34(2):233-238. 被引量:60
  • 6TUZEL O, PORIKLI F, MEER P. Region covariance: a fast descriptor for detection and classifition [ C ]. Pro- ceeding of Europe-an Conference on Computer Vision (ECCV) ,2006:589-600.
  • 7TOSATO D, FARENZENA M, SPERA M, et al. Multi- class classification on riemannian manifolds for video surveillance [ C ]. Proceeding of European Conference on Computer Vision(ECCV) ,2010:378-391.
  • 8FELZENSZWALB P F,GIRSHICK R B,MCALLESTER D, et al. Object detection with discriminatively trained part based models [ J ]. IEEE Transaction on Pattern Analysis and Machine Intelligence ( PAMI), 2010, 32 (9) :1627-1645.
  • 9BENFOLD B, REID I. Stable multi-target tracking in re- al-time surveillance video[ C ]. Proceeding of IEEE In- ternational Conference on Computer Vision and Pattern Recognition(CVPR) ,2011:3457-3464.
  • 10PANDEY M, LAZEBNIK S. Scene recognition and weak- ly supervised object localization with deformable part- based models [ C ]. Proceeding of IEEE International Conference on Computer Vision ( ICCV ), 2011 : 1307-1314.

共引文献337

同被引文献64

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部