摘要
为了满足微波器件进行高分辨率、非破坏性微波矢量近场测量的需求,提出了一种基于金刚石氮空位(NV)色心的全光学微波近场矢量测量技术。该技术利用NV色心对其轴向的圆形极化电磁场的敏感特性,将粘有金刚石NV色心的锥形光纤探头作为传感器,在外部静磁场环境中测量得到具有8个峰的光探测磁共振(ODMR)谱,并在每个ODMR谱峰所对应的微波频率下测量微波器件表面不同NV轴方向的电磁场分量分布,从而得到微波近场矢量测量结果。最后,利用3μm金刚石颗粒对谐振频率2.87 GHz的微带天线进行近场矢量成像,实验结果证明了该方法的有效性,可广泛用于芯片电磁兼容测试、集成微波芯片失效分析、数字电路信号完整性分析等。
In order to meet the needs of microwave devices for high-resolution, non-destructive microwave vector near-field measurement, an all-optical microwave near-field vector measurement technique based on diamond nitrogen-vacancy( NV) centers is proposed. Using the sensitivity of NV centers to the circularly polarized electromagnetic field, the tapered optical fiber probe with diamond NV center is used as the sensor to measure the optical detection magnetic resonance(ODMR) spectrum with 8 peaks in the external static magnetic field environment, and the distribution of electromagnetic field components in different NV directions on the surface of microwave device is measured under the corresponding microwave frequency of each ODMR spectrum peak. The results of microwave near-field vector measurement are obtained. Finally, 3 μm diamond particles are used for near-field vector imaging of microstrip antenna with resonance frequency of 2. 87 GHz. The experimental results show the effectiveness of the method, which can be widely used in chip electromagnetic compatibility(EMC) test, integrated microwave chip failure analysis, digital circuit signal integrity analysis, etc.
作者
王昊
顾邦兴
陈国彬
杜关祥
Wang Hao;Gu Bangxing;Chen Guobin;Du Guanxiang(School o£Telecommunications and Information Engineering,Nanjing University of Post and Telecommunications,Nanjing 210003,China;School of Mechanical and Electrical Engineering,Suqian College,Suqian 223800,China)
出处
《电子技术应用》
2020年第12期5-8,13,共5页
Application of Electronic Technique
基金
江苏省特聘教授项目(RK002STP15001)
南京邮电大学校长特聘教授项目(XK0020914136)
宿迁市产业发展引导资金项目(K201912)
江苏省基础研究计划(自然科学基金)(SBK2020041231)。
关键词
NV色心
微波磁场
矢量测量
天线表征
全光学
非破坏性
nitrogen—vacancy center
microwave field
vector field measurement
antenna characterization
all—optical
non-destructive