摘要
为了解决组成复杂、功能多样、贫样本的系统的综合效能评估问题,针对系统的效能评估指标体系三层结构,构建了基于灰色理论、RBF神经网络以及灰色RBF神经网络的系统效能评估模型,并通过仿真验证了这种灰色RBF神经网络模型的精度要高于灰色模型和RBF神经网络模型,可以准确地对功能多样、组成复杂但是样本少的系统进行综合效能评估。
In order to solve the problem of comprehensive efiectiveness evaluation of the system with complex composition,diverse functions and poor samples,this paper constructs a system effectiveness evaluation model based on grey theory,RBF neural network and grey RBF neural network according to the three-tier structure of the system efiectiveness evaluation index system.The simulation results show that the accuracy of the grey RBF neural network model is higher than that of the grey model and RBF neural network.Through the grey RBF neural network model,we can accurately evaluate the comprehensive effectiveness of the system with various functions,complex composition,few samples.
作者
刘俊卿
刘进
肖龙忠
Liu Junqing;Liu Jin;Xiao Longzhong(Wuhan Institute of Ship Communication,Wuhan 430205,China)
出处
《电子技术应用》
2020年第12期107-110,共4页
Application of Electronic Technique
基金
国防科技创新特区预研项目(19-H863-05-LZ-002-007-03)。