期刊文献+

水声信号检测与识别技术研究现状 被引量:9

Research Status of Underwater Acoustic Signal Detection and Recognition Technology
下载PDF
导出
摘要 水中目标信号检测与识别一直是水声领域的重点难题,因此对水声信号目标检测与识别现状的研究尤为重要。从理论和实际应用两方面入手,分析近年来在水声信号检测与识别方面的新技术,在实际应用背景下分析目前水声目标检测与识别方面存在的问题与不足,同时结合水声领域的已有研究,分析了水声目标检测与识别领域的发展趋势,对水声信号目标检测和识别的进一步研究有一定的借鉴意义。 The detection and recognition of underwater target signal has always been a key problem in the field of underwater acoustics,so the research on the status quo of underwater acoustic signal target detection and recognition is particularly important.The new technologies of underwater acoustic signal detection and recognition in recent years are analyzed from two aspects of theory and practical application.Under the background of practical application,the problems and deficiencies of current underwater acoustic target detection and recognition are discussed.At the same time,combined with existing research in the field of underwater acoustics and related literature,the development trend of underwater acoustic target detection and recognition is analyzed,which has certain reference significance for the further research of underwater acoustic signal target detection and recognition.
作者 李兰瑞 李鹏 刘天宇 郭煜 姜栋瀚 LI Lan-rui;LI Peng;LIU Tian-yu;GUO Yu;JIANG Dong-han(The First Military Representative Office of Naval Equipment Department in Shanghai Area,Shanghai 200000,China;Key Laboratory of Underwater Measurement and Control Technology,Dalian Liaoning 116000,China;Unit 31001,Beijing 100094,China)
出处 《通信技术》 2020年第12期2904-2907,共4页 Communications Technology
关键词 目标检测 目标识别 水声信号处理 波束形成 signal detection signal recognition underwater acoustic signal processing beam forming
  • 相关文献

参考文献6

二级参考文献46

  • 1梁国龙,惠俊英,常明.瞬时频率序列及其低阶矩的应用研究[J].声学学报,1995,20(4):280-288. 被引量:6
  • 2Li J, Stoica P, and Wang Z S. On robust capon beamfoming and diagonal loading [J]. IEEE Trans. on Signal Processing, 2003, 51(7): 1702-1715.
  • 3Shahbazpanahi S, Gershman A B, and Luo Z Q. Robust adaptive beamforming for general-rank signal models [J]. IEEE Trans. on Signal Processing, 2003, 51(9): 2257-2269.
  • 4Sergiy A V, Gershman A B, and Luo Z Q. Robust adaptive beamforming using worst-case performance optimization: a Solution to the signal mismatch problem [J]. IEEE Trans. on Signal Processing, 2003, 51(2): 313-324.
  • 5Li J, Stoica P, and Wang Z S. Doubly constrained robust capon beamformer[J]. IEEE Trans. on Signal Processing, 2004, 52(9): 2407-2420.
  • 6Kim J and Poularikas A D. Comparison of two proposed methods in adaptive noise canceling [J]. Proc. IEEE, the 35th Southeastern Symposium. Morgantown, USA, 2003: 400-403.
  • 7Mehta S K, Fay J, and Maciejewski P. A modified eckart post-beamformer filter for improved detection using broadband features [C]. Proc. ICASSP'96. Atlanta USA, 1996: 3045-3048.
  • 8Wagstaff R A. The AWSUM filter: A 20-dB gain fluctuation-based processor[J]. IEEE Journal of Oceanic Engineering, 1997, 22(1): 110-118.
  • 9Gardner S D and Wagstaff R A. DIET AWSUM: A fluctuation-based deconvolution technique for enhancing Signal-to-Noise Ratio and resolution[J]. IEEE Journal of Oceanic Engineering, 1997, 22(1): 119-127.
  • 10Krim H and Viberg M. Two decades of array signal processing research [J]. IEEE Signal Processing Magzine, 1996, 13(4): 67-93.

共引文献29

同被引文献126

引证文献9

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部