期刊文献+

基于PGM的态势预测技术

Situation Prediction Technology based on PGM
下载PDF
导出
摘要 概率图模型采取概率论相关方法,利用图来表达变量相关关系,近年来在机器学习和人工智能等领域应用广泛。提出基于概率图模型(PGM)的两种系统状态预测方法。首先介绍了通过隐马尔可夫模型(HMM)可以计算出一个系统每一时刻处于各种状态的概率以及这些状态之间的转移概率。然后详细描述了可以通过每个时刻的状态转移矩阵,计算出任意时刻系统状态取值概率。最后在已知系统历史状态序列,利用概率图模型算法,在状态转移矩阵随机时间变化和不随时间变化的两种情形下,预测未来系统的状态。 In recent years,probability graph models is widely used in machine learning,artificial intelligence and other fields.Two methods of system state prediction based on PGM(probability graph model)are proposed.This paper first introduces that the HMM(hidden Markov model)model is used to calculate the probability of each system being in various states at every moment and the transition probability between these states.Then,it describes in detail that through the state transition matrix at each time,the probability of the value of the system state at any time is calculated.Finally,the paper treats that when the historical state sequence of the system is known,the PGM algorithm is used to predict the state of the future system in two situations of random time change and no change with time.
作者 刘俊波 黄斌 邓蕾 LIU Jun-bo;HUANG Bin;DENG Lei(No.30 Institute of CETC,Chengdu Sichuan 610041,China)
出处 《通信技术》 2020年第12期3001-3006,共6页 Communications Technology
关键词 PGM 状态预测 隐马尔可夫模型 状态转移矩阵 PGM state prediction hidden Markov model state transition matrix
  • 相关文献

参考文献2

二级参考文献105

  • 1Langseth H, Portinale L. Bayesian networks in reliability [J]. Reliability Engineering and System Safety, 2007,92 (1) : 92-108.
  • 2Santana R, Shakya S. Probabilistic Graphical Models and Mar- kov Networks[J]. Markov Networks in Evolutionary Computa- tion,2012,14(1) :3 19.
  • 3Shakya S, Santana R. A Review of Estimation of Distribution Algorithms and Markov Networks[J]. Markov Networks in Evo- lutionary Computation, 2012,14 (1) : 21-37.
  • 4Pal C J,Weinman J J, Tran L C, et al. On Learning Conditional Random Fields for Stereo: Exploring Model Structures and Ap- proximate Inference[J]. International Journal of Computer Vi- sion, 2012,99(3) : 319-337.
  • 5Golumbic M C,Maffray F, Morel G. A characterization of chain probe graphs[J]. Annals of Operation Research, 2009,188 ( 1 ) : 175-183.
  • 6Sun X, Huang D. Nested Template based Model for Chinese- Japanese Machine Translation[C]//Proceedings of 14th Inter- national Conference on Computational Science and Engineering. 2011 : 161-166.
  • 7Murphy K. Dynamic Bayesian networks: representation, infer- ence and learning[D]. Berkeley: University of California, 2002.
  • 8Getoor L, Taskar B. Introduction to Statistical Relational Lear- ning[M]. MIT Press, 2007.
  • 9Friedman N, Getoor L, Koller D, et al. Learning probabilistic re- lational models[C]//Proceedings of the 16th International Joint Conference on Artificial Intelligence. 1999: 1300-1307.
  • 10Medina-Oliva G, Weber P, Levrat E, et al. Use of probabilistic relational model (PRM) for dependability analysis of complex systems[C[ // Proceedings of 12th IFAC Symposium on Large Scale Systems.-Theory and Applications. 2010.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部