摘要
以Pearson关联理论和灰色关联理论为基础,借助某垃圾焚烧企业的监控数据,定量分析二氧化硫、氮氧化物、烟尘、一氧化碳、氯化氢指标以及相关的13个影响因子之间的关系。计算所有变量之间的关联度矩阵,进而计算出各个指标和影响因子的关联度排序。针对每个指标选择前5影响因子进行多元线性回归分析并计算回归效果。分析的结果表明:在Pearson和灰色理论下,氮氧化物与影响因子关联度最大,二氧化硫和一氧化碳与影响因子关联度弱,而烟尘和氯化氢与影响因子几乎没有关联度。
Based on the pearson and the grey correlation theory,and the data of a factory of waste incineration,this paper gives the quantitative analysis the relationship between 5 target factors:sulfur dioxide,nitrogen oxides,ash,carbon monoxide and hydrogen chloride with 13 impact factors.The correlation degrees matrix is calculated between all pair of factors and sorted degrees between each target factor and impact factors are produced.A multiple regression analysis is applying for each of 5 target factors and its top 5 impact factors and the regression effects are gained.The analyzing results show that under Pearson and gray principle,nitrogen oxides have great relationship with impacting factors,sulfur dioxide and carbon monoxide have week relationship with impacting factors and ash and hydrogen chloride almost have no relationship with impacting factors.
作者
杨楠
李亚平
薛军
李吉生
赵飞
侯鑫
沈有建
Yang Nan;Li Yaping;Xue Jun;Li Jisheng;Zhao Fei;Hou Xing;Shen Yoijian(Renmin University of China,Beijing 100029,China;Solid Waste and Chemicals Management Center,MEE,Beijing 100029,China;Taiyuan Environmental Monitor Center,Taiyuan 030009,China;Beijing Baoshengyuan Science and Technology Co.,Ltd.,Beijing 100080,China)
出处
《山东化工》
CAS
2020年第22期254-257,共4页
Shandong Chemical Industry
关键词
关联分析
多元线性回归
垃圾焚烧
环境监测
association analysis
multiple regression
emission data
environmental monitoring