期刊文献+

基于多源遥感数据的森林树种准确识别方法研究

Accurate Identification Method of Forest Tree Species Based on Multi-source Remote Sensing Data
下载PDF
导出
摘要 针对传统森林树种识别方法存在的远程遥感信息监测和识别能力较低的问题,提出基于遥感成像和大数据分析的森林树种准确识别方法。采用遥感影像技术采集森林树种的多源遥感成像大数据,并通过建立森林树种多源遥感影像分析模型,对采集的森林树种多源遥感数据进行融合处理,然后通过边缘像素特征检测方法分析森林树种多源遥感图像的特征,结合点匹配方法得到森林树种多源遥感图像的子带像素特征点,对图像实施遥感特征匹配和信息增强,并根据信息增强结果以及图像的角点信息和边缘像素点信息检测结果进行模糊度识别和分类,结合支持向量机和极限学习机进行森林树种遥感图像检测和信息识别。仿真结果表明:该方法对森林树种识别分类的准确性较高,且图像辨识度较高,提高了对森林树种的远程遥感信息监测和识别能力。 Aiming at the poor remote sensing information monitoring and identification ability of traditional forest tree species identification methods,an accurate forest tree species identification method based on remote sensing imaging and big data analysis was proposed.With remote sensing image acquisition forest tree species of multi-source remote sensing image data,andthe forest tree species multi-source remote sensing image analysis model,the forest tree species to fusion of multi-source remote sensing data was analyzed.And according to the result of information enhancement and the angle of the image information and edge pixel information detection,the fuzzy degree of recognition and classification for remote sensing image detection and information recognition of forest tree species are carried out.The simulation results show that this method has a higher accuracy in the identification and classification of forest tree species,and the image identification is higher,which improves the remote sensing information monitoring and identification ability of forest tree species.
作者 刘玉婵 Liu Yuchan(ChuzhouUniversity,Chuzhou,Anhui 239000,China)
机构地区 滁州学院
出处 《黑龙江工业学院学报(综合版)》 2020年第10期69-73,共5页 Journal of Heilongjiang University of Technology(Comprehensive Edition)
基金 安徽省高校自然科学研究重点项目“基于半监督学习的多源遥感数据森林树种识别研究”(项目编号:KJ2019A0633) 安徽省高校自然科学研究重点项目“华东地区大气细颗粒物遥感监测及驱动因素分析”(项目编号:KJ2019A0632) 安徽省高校自然科学研究重点项目“异源环境下车载点云与街景影像融合研究”(项目编号:KJ2018A0425) 国家自然科学基金“顾及小样本的森林优势树种半监督稀疏表示遥感分类”(项目编号:41601455) 国家自然科学基金“黄土小流域人工地表景观对土壤有机碳动态变化的影响机制研究”(项目编号:41701450)。
关键词 多源 遥感数据 森林 树种 识别 遥感图像 multi-source remote sensing data forests tree species identification remote sensing images
  • 相关文献

参考文献10

二级参考文献61

  • 1谭兵,徐青,邢帅,耿则勋.小波超分辨率重建算法及其在SPOT影像中的应用[J].测绘学报,2004,33(3):233-238. 被引量:6
  • 2王迅,金万平,张存林,沈京玲,郭广平,杨党纲,吴东流,李建伟,郭兴旺.红外热波无损检测技术及其进展[J].无损检测,2004,26(10):497-501. 被引量:110
  • 3R R Coifman, D L Donoho. Translation-Invariant De-Noising [M]. New York: Springer Press, 1995.
  • 4M N Do, M Vetterli. Contourlets: A directional multiresolution image representation [C]. IEEE, 2002, 1(1): 357-360.
  • 5P Burt, E Adelson. The Laplacian pyramid as a compact image code [J]. IEEE Transactions on Communications, 1983, 31(4): 532- 540.
  • 6R H Bamberger, M J T Smith. A filter bank for the directional decomposition of images: Theory and design [C]. IEEE Transactions on Signal Processing, 1992, 40(4): 882-893.
  • 7M N Do, M Vetterli. The eontourlet transform: An effieient direetional multiresolution image representation [J]. IEEE Transactions on Image Processing, 2005, 14(12): 2091-2106.
  • 8A L Da Cunha, J Zhou, M N Do. The nonsubsampled eontourlet transform: Theory, design, and applications [J]. IEEE Transactions on Image Processing, 2006, 15(10): 3089-3101.
  • 9M N Do, M Vetterli. Framing pyramids [J]. IEEE Transactions on Signal Proeessing, 2003, 51 (9): 2329-2342.
  • 10Y M Lu, M N Do. Multidimensional directional filter banks and surfaeelets [J]. IEEE Transaetions on Image Proeessing, 2007, 16 (4): 918-931.

共引文献202

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部