摘要
突发公共事件中网络舆情容易快速形成和传导。科学分析和研判网络舆情对于稳定社会情绪、疏解社会矛盾具有重要意义。文章综合搜索引擎、新闻媒体和社交网络3类数据,利用Python语言,采用网络爬虫、分词等技术进行信息提取;然后借助情绪极性词典进行舆情感知,得到情绪极性和程度的分布情况;并进一步利用元胞自动机对舆情演化进行分析和建模;最终得到突发公共事件背景下网络舆情演化的一般规律和特点,为突发公共事件中网络舆情的分析研判奠定了基础。
Network public opinion is easy to form and transmit quickly in public emergencies.Scientific analysis and study of network public opinion is of great significance to stabilize social mood and solve social contradictions.Comprehensive search engine,news media and social network three kinds of data,using Python language,using web crawler,word segmentation and other technologies for information extraction.Then with the help of emotional polarity dictionary for public opinion perception,get the distribution of emotional polarity and degree.And further use cellular automata to analyze and model the evolution of public opinion.Finally get the general law and characteristics of the evolution of network public opinion in the context of public emergencies,which lays a foundation for the analysis and judgment of network public opinion in public emergencies.
作者
申晨
程冬玲
张倩
Shen Chen;Cheng Dongling;Zhang Qian(Institute of Financial Science and Technology,Hebei Finance University,Baoding 071000,China;Engineering and Computer Institute,Hebei Finance University,Baoding 071000,China;Department of Internet Commerce,Hebei Software Institute,Baoding 071000,China)
出处
《无线互联科技》
2020年第21期20-21,共2页
Wireless Internet Technology
基金
河北省高等学校科学技术研究项目,项目编号:Z2020244
国家社科基金项目,项目编号:19CDJ027
河北省教育厅人文社会科学研究重大课题攻关项目,项目编号:ZD202019。
关键词
公共事件
舆情感知
舆情演化
元胞自动机
public events
perception of public opinion
evolution of public opinion
cellular automata