期刊文献+

基于自适应模糊神经网络的下肢关节运动意图估计

Motion intention estimation of lower limb joint angles based on adaptive fuzzy neural network
下载PDF
导出
摘要 利用神经网络和模糊推理技术建立了腿部关节角度预估模型。模型输入为处理后的人体下肢股直肌(VR)、股外侧肌(VL)和长伸肌(EP)的表面肌电信号,输出为髋、膝、踝三个关节角度预测值。在算法迭代更新过程中,采用混合策略和误差反向传播算法实现结构参数的自适应调整与优化。通过了数值仿真实验。 With neural networks and fuzzy inference techniques,an estimation model for lower limb joint angles is built in which the surface electromyography signals(sEMG)of human vastus rectus muscle(VR),vastus lateralis muscle(VL)and extensor pollicis longus(EP)are inputs,while the outputs are hip,knee and ankle joint angles estimations.In the iterative update process of the algorithm,both the hybrid strategy and error back propagation algorithm are adopted to adjust the parameters.Simulation is carried out.
作者 滕召纬 孙中波 刘克平 TENG Zhaowei;SUN Zhongbo;LIU Keping(School of Electrical & Electronic Engineering, Changchun University of Technology, Changchun 130012, China)
出处 《长春工业大学学报》 CAS 2020年第6期558-562,共5页 Journal of Changchun University of Technology
基金 吉林省科技发展计划项目资助(20200201291JC,20200404208YY)。
关键词 肢关节角度估计 表面肌电信号 自适应模糊神经网络 lower limb joint angles estimation surface electromyography(sEMG) adaptive fuzzy neural network(AFNN)
  • 相关文献

参考文献8

二级参考文献110

  • 1Goodrich M A, Schultz A C. Human-robot interaction: a survey. Foundations and Trends in Human-Computer Inter- action, 2007, 1(3): 203-275.
  • 2Nam Y, Koo B, Cichocki A, Choi S. GOM-face: GKP, EOG, and EMG-based multimodal interface with application to humanoid robot control. IEEE Transactions on BiomedicM Engineering, 2014, 61(2): 453-462.
  • 3Artemiadis P. EMG-based robot control interfaces: past present and future. Advances in Robotics ~z Automation 2012, 1(2): 1-3.
  • 4Ngeo J G, Tamei T, Shibata T. Continuous and simul- taneous estimation of finger kinematics using inputs from an EMCl-to-muscle activation model. Journal of NeuroEngi- neering and Rehabilitation, 2014, 11:122.
  • 5Chowdhury R H, Reaz M B I, Ali M A B, Bakar A A A, Chellappan K, Chang T G. Surface electromyography sig- nal processing and classification techniques. Sensors, 2013, 13(9): 12431-12466.
  • 6Ahsan M R, Ibrahimy M I, Khalifa O O. EMG signal classifi- cation for human computer interaction: a review. European Journal of Scientific Research, 2009, 33(3): 480-501.
  • 7Ison M, Artemiadis P. Multi-directional impedance control with electromyography for compliant human-robot interac- tion. In: Proceedings of the 2015 International Conference on Rehabilitation Robotics (ICORR). Singapore: IEEE, 2015. 416-421.
  • 8Farina D, Merletti R, Enolau R M. The extraction of neural strategies from the surface EMG. Journal of Applied Phys- iology, 2004, 96(4): 1486-1495.
  • 9De Luca C J. Imaging the Behavior of Motor Units by De- composition of the EMG Signal, Boston, MA, USA: Delsys Inc.. 2008.
  • 10Chu J U, Moon I, Lee Y J, Kim S K, Mun M S. A supervised feature-projection-based real-time EMG pattern recognition for multifunction myoelectric hand control. IEEE/ASME Transactions on Mechatronics, 2007, 12(3): 282-290.

共引文献322

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部