摘要
利用神经网络和模糊推理技术建立了腿部关节角度预估模型。模型输入为处理后的人体下肢股直肌(VR)、股外侧肌(VL)和长伸肌(EP)的表面肌电信号,输出为髋、膝、踝三个关节角度预测值。在算法迭代更新过程中,采用混合策略和误差反向传播算法实现结构参数的自适应调整与优化。通过了数值仿真实验。
With neural networks and fuzzy inference techniques,an estimation model for lower limb joint angles is built in which the surface electromyography signals(sEMG)of human vastus rectus muscle(VR),vastus lateralis muscle(VL)and extensor pollicis longus(EP)are inputs,while the outputs are hip,knee and ankle joint angles estimations.In the iterative update process of the algorithm,both the hybrid strategy and error back propagation algorithm are adopted to adjust the parameters.Simulation is carried out.
作者
滕召纬
孙中波
刘克平
TENG Zhaowei;SUN Zhongbo;LIU Keping(School of Electrical & Electronic Engineering, Changchun University of Technology, Changchun 130012, China)
出处
《长春工业大学学报》
CAS
2020年第6期558-562,共5页
Journal of Changchun University of Technology
基金
吉林省科技发展计划项目资助(20200201291JC,20200404208YY)。
关键词
肢关节角度估计
表面肌电信号
自适应模糊神经网络
lower limb joint angles estimation
surface electromyography(sEMG)
adaptive fuzzy neural network(AFNN)