期刊文献+

基于自动编码器的塑料制品表面缺陷检测 被引量:3

Surface Defect Detection of Plastic Products Based on Automatic Encoder
原文传递
导出
摘要 基于自动编码器的塑料制品表面缺陷检测方法,使用无监督的方式学习正常图像的隐形特征,通过重建增大正常图像和缺陷图像间的差异,从而检测缺陷。自动编码器方法不需要人工选取特征,同时,不需要使用缺陷图像作为监督信息实现模型学习。以区分正常图像和缺陷图像为目标,对塑料制品表面缺陷进行检测。实验结果表明,自动编码器方法能够有效地检测出多种类型的缺陷,检测准确性较高,具有广泛的应用。 The surface defect detection method of plastic products based on an automatic encoder uses an unsupervised method to learn the invisible features of normal images,and enlarges the difference between normal images and defective images through reconstruction to detect defects.The automatic encoder method does not need to manually select features,and at the same time,it does not need to use defect images as supervision information to realize model learning.To distinguish between normal images and defective images as the goal,the surface defects of plastic products are detected.The experimental results show that the automatic encoder method can effectively detect many types of defects,with high detection accuracy,and has a wide range of applications.
作者 方忠祥 FANG Zhong-xiang(Xinjiang Institute of Technology,Aksu 843100,China)
机构地区 新疆理工学院
出处 《塑料科技》 CAS 北大核心 2020年第11期80-82,共3页 Plastics Science and Technology
关键词 自动编码器 深度学习 塑料制品 缺陷检测 无监督学习 Autocoder Deep learning Plastic products Defect detection Unsupervised learning
  • 相关文献

参考文献6

二级参考文献41

共引文献47

同被引文献34

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部