摘要
针对目前电力巡检图像中传统的防振锤检测方法仍存在效率低、精度差、计算成本高等问题,提出一种基于区域全卷积网络(region-based fully convolutional networks,R-FCN)的电力巡检图像防振锤智能识别方法.该方法通过特征提取网络自动提取防振锤特征,省却了传统检测方法特征提取的过程,提高了效率.此外,在R-FCN网络中采用位置敏感池化来引入平移变换,抵消全卷积网络造成的平移不变性问题,在检测精度和效率上均有较大提高.实验结果表明,该方法能准确检测出复杂背景下不同形态的防振锤,平均准确率高达88%,具有较强的鲁棒性.
In view of the problems of low efficiency,poor accuracy and high computational cost in the traditional detection methods of dampers in aerial inspection images,the region based fully convolutional networks(R-FCN)method for damper detection of aerial inspection images is proposed.The model based on R-FCN can automatically extract the features of dampers through the feature extraction network,which saves the process of feature extraction of traditional detection methods and improves the efficiency.In addition,the position-sensitive pool is adopted in R-FCN network to introduce translation changes,which can offset translation invariance caused by full convolution network,and greatly improve detection accuracy and efficiency.The experimental results show that the method can accurately detect different forms of dampers under complex background,and the accuracy is up to 88%,it also has strong robustness.
作者
罗玉鹤
庞红旗
高飞翎
白文博
陈静
LUO Yuhe;PANG Hongqi;GAO Feiling;BAI Wenbo;CHEN Jing(Ningbo Electric Power Design Institute,Ningbo,Zhejiang 315000,China;College of Electrical Engineering and Automation,Fuzhou University,Fuzhou,Fujian 350108,China)
出处
《福州大学学报(自然科学版)》
CAS
北大核心
2020年第6期714-719,共6页
Journal of Fuzhou University(Natural Science Edition)
基金
福建省自然科学基金面上项目(2017J01500)。
关键词
目标检测
区域全卷积网络
深度学习
卷积网络
object detection
region based fully convolutional networks(R-FCN)
deep learning
convolution network