期刊文献+

基于非下采样轮廓波变换的离线签名识别 被引量:2

Off-line signature recognition based on non-downsampled contourlet transform
下载PDF
导出
摘要 为提高手写签名的识别率,提出一种基于NSCT子带纹理特征融合的签名识别方法。对签名图像进行预处理(包括灰度化、平滑、二值化、归一化、细化等),对签名图像进行非下采样Contourlet变换,对变换产生的子带分别提取多级区域局部二值模式和灰度共生矩阵特征,通过融合形成新特征。数据库包含维吾尔文和柯尔克孜文两类文种,每个文种100人(20个样本/人),共4000个签名样本进行实验,实验结果表明,该方法能更准确地提取签名图像多尺度、多方向的纹理特征,可有效提高识别率。 To improve the recognition rate of handwritten signature,a signature recognition method based on NSCT sub-band texture feature fusion was proposed.The signature image was preprocessed(including grayscale,smoothing,binarization,normalization,refinement,etc.).The non-subsampled Contourlet transform was performed on the signature image,and the multi-level regional local binary pattern and the gray level co-occurrence matrix feature were extracted respectively for the sub-bands generated by transformation,and new features were formed by fusion.The database contained Uyghur and Kirgiz languages,each of which had 100 people(20 samples/person)and a total of 4000 signature samples.Experimental results show that the proposed method can extract signature images more accurately.Multi-directional texture features can effectively improve the re-cognition rate.
作者 莫龙飞 麦合甫热提 朱亚俐 吾尔尼沙·买买提 库尔班·吾布力 MO Long-fei;Mahpirat;ZHU Ya-li;Hornisa Mamat;Kurban Ubul(College of Information Science and Engineering,Xinjiang University,Urumqi 830046,China;Academic Affairs Department,Xinjiang University,Urumqi 830046,China)
出处 《计算机工程与设计》 北大核心 2020年第12期3472-3478,共7页 Computer Engineering and Design
基金 国家自然科学基金项目(61862061、61563052、61163028) 新疆大学2018年度博士启动基金项目(62008040)。
关键词 签名识别 非下采样CONTOURLET变换 特征融合 多级区域局部二值模式 灰度共生矩阵 支持向量机 BP神经网络 signature recognition non-subsampled Contourlet transform feature fusion multi-level regional local binary mode gray level co-occurrence matrix support vector machine BP neural network
  • 相关文献

参考文献3

二级参考文献30

  • 1陈雪,朱敏,钟煜,范量.基于HTM的离线手写签名识别及改进[J].四川大学学报(工程科学版),2011,43(S1):146-150. 被引量:5
  • 2江立,阮秋琦.基于神经网络的手势识别技术研究[J].北京交通大学学报,2006,30(5):32-36. 被引量:12
  • 3黄永青,梁昌勇,杨善林,陆青.基于一种加速收敛变异策略的交互式遗传算法[J].系统仿真学报,2007,19(9):1913-1916. 被引量:7
  • 4Medam Manoj Kumar,Niladri Bihari Puhan.Off-line signature verification:upper and lower envelope shape analysis using chord moments[J].IET Biometrics,2014,3(4):347-354.
  • 5Kurban Ubul,Andy Adler,Nurbiya Ydikar.Effects on accuracy of Uyghur handwritten signature recognition[J].Communications in Computer and Information Science,2012,321(6):548-555.
  • 6Javier Galbally,Moises Diaz-Cabrera,Miguel A.Ferrer,et al.On-line signature recognition through the combination of real dynamic data and synthetically generated static data[J].Pattern Recognition,2015,48(9):2921-2934.
  • 7Bence Kovari,Hassan Charaf.A study on the consistency and significance of local features in off-line signature verification[J].Pattern Recognition Letters,2013,34(3):247-255.
  • 8AliKarouni,Bassam Daya,Samia Bahlak.Offline signature recognition using neural networks approach[J].Procedia Computer Science,2011,3:155-161.
  • 9Marcin Piekarczyk,Marek R Ogiela.Matrix-based hierarchical graph matching in off-line handwritten signatures recognition[C]//Proc of the Second IAPR Asian Conference on Pattern Recognition.Okinawa:IEEE,1993:897-901.
  • 10Kurban Ubul,Andy Adler,Gulirana Abliz,et al.Off-line Uyghur signature recognition based on modified grid information features[C]//Proc of the 11th International Conference on Information Sciences,Signal Processing and Their Applications.Montreal:IEEE,2012:1056-1061.

共引文献23

同被引文献70

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部