摘要
目的:针对患者在就诊过程中缺乏专业指导带来的诸多问题,提出基于深度学习与就诊场景相结合的技术方法,使患者能够采用自然语义的方式描述疾病症状,获得系统推荐最佳科室和专业的咨询服务,从而促进便民服务模式创新。方法:采用医疗知识图谱和卷积神经网络方法,构建智能分诊模型,实现疾病知识的自动问答和智能导诊。基于面向服务(Service-Oriented Architecture,SOA)的开放架构,通过共享服务模式向传统预约服务渠道提供统一规范的服务接口。结果:在实际示范应用过程中,2018年智能分诊模型通过便民服务渠道提供了1246次/天的患者咨询,患者满意度达到91%。结论:基于深度学习技术的便民服务能够有效改善患者服务体验,提升患者就诊效率,降低人工服务成本,适合在医院推广使用。
Objective:In view of many problems caused by lack of professional guidance when patients seek medical service,this paper puts forward a technical method combining deep learning with medical visiting scene,which allows patients to describe disease symptoms in a natural semantic way to obtain suitable department recommended by the system as well as professional convenient consultation,thereby promoting the innovation of convenient service mode.Methods:By medical knowledge graph and convolution neural network,an intelligent triage model is built to realize automatic question answering of disease knowledge and intelligent triage.Based on the open-ended Service-Oriented Architecture(SOA),a unified and standardized service interface is provided to traditional reservation channels through the shared service mode.Results:In the practical demonstration application,the intelligent triage model provided patient consultation 1,246 times/day in 2018 through convenient service channels,and patient satisfaction reached 91%.Conclusion:The convenient service based on deep learning technology can effectively improve patients service experience,promote medical visiting efficiency and reduce labor service cost,which should be popularized in hospital.
作者
周英
李静
施宇
何萍
ZHOU Ying;LI Jing;SHI Yu(Hospital Development Center,Shanghai 200041,P.R.C.;不详)
出处
《中国数字医学》
2020年第11期25-28,共4页
China Digital Medicine