期刊文献+

矿井喷雾降尘超声雾化激振喷嘴参数优化仿真分析 被引量:8

Simulation and Analysis of Parameters Optimization of Ultrasonic Atomizing Nozzle for Mine Atomizing Dust Removal
下载PDF
导出
摘要 为了提高矿井喷雾降尘用喷嘴的水射流雾化效率,设计了一种结合自激振荡的高效雾化喷嘴,并通过数值仿真的方法对其关键参数进行优化。研究结果表明:当通道内有流体通过时产生了速率呈现层状分布特征,在喷嘴腔内形成涡旋流场,在靠近谐振腔的前部区域喷嘴速度达到100 m/s以上;当超声波和自激振荡波发生共同作用时,喷嘴内达到最优湍流扰动效果,获得更优的雾化效果;当角度变小后获得更大的内腔体积,处于60°~70°的碰撞壁角度范围内,涡旋对喷嘴内腔形成充满状态,获得更明显湍流作用;在谐振腔达到3 mm的深度时,实现了最优灌入效果,并且激波也明显增强;随着谐振腔深度的增加,湍流动能表现出单调减小的变化规律;处于更大的谐振腔深度下,湍流动能随之提高,由此实现更强湍流作用。 In order to improve the water jet atomization efficiency of the nozzle used in mine atomization for dust removal,an efficient atomization nozzle combined with self-excited oscillation was designed,and its key parameters were optimized by numerical simulation.The results show that:when the fluid passes through the channel,the velocity presents a laminar distribution characteristic,forming a vortex flow field in the nozzle cavity,and the nozzle velocity reaches more than 100 m/s in the front area near the resonant cavity.When ultrasonic wave and self-excited oscillation wave interact together,the optimal turbulence disturbance effect is achieved in the nozzle,and the better atomization effect is obtained.When the angle becomes smaller,a larger volume of the inner cavity is obtained,which is within the collision wall angle range of 60°to 70°.The vortex forms a filling state on the inner cavity of the nozzle to obtain a more obvious turbulence effect.When the resonator reaches the depth of 3 mm,the optimal injection effect is achieved,and the shock wave is significantly enhanced.With the increase of cavity depth,the turbulent kinetic energy decreases monotonically.At a larger cavity depth,the turbulent kinetic energy is increased and the turbulent effect is stronger.
作者 温禄淳 WEN Luchun(China Coal Technology and Engineering Group Shenyang Research Institute,Fushun 113122,China;State Key Laboratory of Coal Safety Technology,Fushun 113122,China)
出处 《煤矿安全》 CAS 北大核心 2020年第11期109-112,共4页 Safety in Coal Mines
关键词 喷雾降尘 超声雾化喷嘴 自激振荡 喷嘴腔优化 数值仿真 spray dust fall ultrasonic atomizing nozzle self-excited oscillation nozzle cavity optimization numerical simulation
  • 相关文献

参考文献11

二级参考文献95

共引文献72

同被引文献83

引证文献8

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部