期刊文献+

Physical properties of vortex and applicability of different vortex identification methods

原文传递
导出
摘要 For correct identification of vortices,this paper first analyzes the properties of the rigid vortex core and its induced flow field given by the Rankine vortex model,and it is concluded that the concentrated vortex structure should consist of the vortex core and the induced flow field(the potential flow region with a weak shear layer).Then the vortex structure is analyzed by using the Oseen vortex model.Compared with the Rankine vortex,the Oseen vortex is a concentrated vortex with a deformed vortex core.The vortex structure consists of the vortex core region,the transition region and the shear layer region(or the potential flow region).The transition region reflects the properties of the resultant vorticity of the same magnitude and the resultant deformation rate of the shear layer,and the transition region also determines the boundary of the vortex core.Finally,the evolution of leading-edge vortices of the double-delta wing is numerically simulated.And with different vortex identification methods,the shape and the properties of the leading-edge vortices identified by each method are analyzed and compared.It is found that in the vorticity concentration region,the vortices obtained by using ω,λ2,Ω criteria and Q criteria are basically identical when appropriate threshold values are adopted.However,in the region where the vorticity is dispersed,due to the influence of the flow viscous effect and the adverse pressure gradient,the results obtained by different vortex identification methods can be quite different,as well as the related physical properties,which need to be further studied.
机构地区 Lu Shijia Laboratory
出处 《Journal of Hydrodynamics》 SCIE EI CSCD 2020年第5期984-996,共13页 水动力学研究与进展B辑(英文版)
基金 supported by the National Natural Science Foundation of China(Grant No.11772033).
  • 相关文献

参考文献4

二级参考文献15

  • 1E A. Davidson, Turbulence: An Introduction for Scientists and Engi- neers (Oxford University Press, Oxford, 2004).
  • 2J. Jeong, and F. Hussain, J. Fluid Mech. 285, 69 (1995).
  • 3L.D. Landau, and E. M. Lifshitz, Fluid Mechanics (Pergamon, New York, 1987), p.14.
  • 4S. K. Robinson, Annu. Rev. Fluid. Mech. 23, 601 (1991).
  • 5A. Perry, and M. Chong, Annu. Rev. Fluid. Mech. 19, 125 (1987).
  • 6J. Zhou, R. J. Adrian, S. Balachandar, and T. Kendall, J. Fluid Mech. 387, 353 (1999).
  • 7J. C. R. Hunt, A. A. Wray, and P. Moin, in Eddies, streams, and conver- gence zones in turbulent flows: Proceedings of the Summer Program (Center for Turbulence Research, 1988), pp. 193-208.
  • 8B. Pierce, P. Moin, and T. Sayadi, Phys Fluids 25, 015102 (2013).
  • 9H. von Helmholtz, Phil. Mag. 33,485 (1867).
  • 10C. Liu, Y, Yatt, and P, Lu, Comput & Ftuids 102,353 (2014).

共引文献143

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部