期刊文献+

基于稀疏重构和CNN的转发干扰检测方法 被引量:1

Forward interference detection method based on sparse reconstruction and CNN
下载PDF
导出
摘要 针对单个距离环样本未采样到转发干扰,仅稀疏重构了杂波部分而导致机载雷达空时自适应处理性能严重下降的问题,研究对比了两种基于卷积神经网络(CNN)的干扰检测方法。一种基于经典的LeNet-5模型,另一种采用较新的GoogLeNet模型。利用杂波和干扰在角度-多普勒维平面上的不同分布特性,通过对稀疏重构后的空时功率谱进行识别分类,测试结果显示识别准确率可达84%和99.8%。进而仅利用采样到干扰的训练样本,最终稀疏重构出正确的杂波与干扰空时功率谱。仿真结果验证了该方法的有效性。 Aiming at the problem that a single range loop sample is not sampled to the forwarding interference,and only the clutter part is sparsely reconstructed,which results in a serious degradation of the airborne radar space-time adaptive processing performance,the study compared two types based on convolutional neural networks(CNN)Of interference detection methods.One is based on the classic LeNet-5 model,and the other uses the newer GoogLeNet model.Using the different distribution characteristics of clutter and interference on the angle-Doppler dimension plane,by identifying and classifying the space-time power spectrum after sparse reconstruction,the test results show that the recognition accuracy can reach 84%and 99.8%.Furthermore,only the training samples sampled to interference are used to finally reconstruct the correct clutter and interference space-time power spectrum sparsely.The simulation results verify the effectiveness of the method.
作者 周峻 吉丰 Zhou Jun;Ji Feng(College of Computer and Information,Hohai University,Nanjing 211100,China)
出处 《国外电子测量技术》 2020年第10期109-114,共6页 Foreign Electronic Measurement Technology
关键词 转发干扰 稀疏重构 空时自适应处理 卷积神经网络 GoogLeNet forwarding interference sparse reconstruction space-time adaptive processing convolutional neural network GoogLeNet
  • 相关文献

参考文献10

二级参考文献78

  • 1金连文,覃剑钊.手写汉字识别弹性网格Gabor特征提取方法的研究[J].计算机应用研究,2004,21(12):163-165. 被引量:11
  • 2朱双东,张懿,陆晓峰.三角形交通标志的智能检测方法[J].中国图象图形学报,2006,11(8):1127-1131. 被引量:33
  • 3LIM T Y,RATNAM M M,KHALID M A.Automatic classification of weld defects using simulated data and an MLP neural network[J].Insight,2007,49 (3):154-159.
  • 4VILAR R,ZAPATA J,RUIZ R.An automatic system of classification of weld defects in radiographic images[J].NDT and E International,2009,42(5):467-476.
  • 5ZAPATA J,VILAR R,RUIZ R.An adaptive-networkbased fuzzy inference system for classification of welding defects[J].NDT & E International,2010,43 (3):191-199.
  • 6ZAPATA J,VILAR R,RUIZ R.Performance evaluation of an automatic inspection system of weld defects in radiographic images based on neuroclassifiers[J].Expert Systems with Applications,2011,38 (7):8812-8824.
  • 7MIRAPEIX J,GARCíA-ALLENDE P B,COBO A,et al.Real-time arc-welding defect detection and classification with principal component analysis and artificial neural networks[J].NDT & E International,2007,40 (4):315-323.
  • 8ALAKNANDA,ANAND R S,KUMAR P,et al.Flaw detection in radiographic weldment images using morpho logical watershed segmentation technique[J].NDT&E International,2009,42(1):2-8.
  • 9VINCENT P,LAROCHELLE H,LAJOIE I,et al.Stacked denoising autoencoders:learning useful representations in a deep network with a local denoising criterion[J].Journal of Machine Learning Research,2010,11 (12):3371-3408.
  • 10BENGIO Y.Learning deep architectures for AI[J].Foundations and Trends in Machine Learning,2009,2 (1):1-127.

共引文献120

同被引文献16

引证文献1

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部