摘要
针对所采集的原始3D点云电缆数据存在大尺度离群点和小尺度起伏噪点的问题,设计出一种基于3D点云的电缆自适应多尺度去噪算法。首先,对于原始3D点云电缆数据应用统计离群消除滤波算法滤波,去除大尺度空间孤立离群点;其次,对于传统双边滤波的两个参数σc以及σs应用了基于半径和标准差的自适应改进;最后,采用提出的基于半径和标准差的自适应双边滤波算法去除3D点云电缆数据中的小尺度起伏噪点。实验结果表明,提出算法对3D点云电缆数据能多尺度去除噪点,且无需人工调整参数,明确了电缆边界,实现了理想的点云去噪效果,为后续电缆分割、识别等可视化巡检奠定了良好基础。
Aiming at the problems of large scale outliers and small scale fluctuation noise points in the original 3 Dpoint cloud cable data collected,an adaptive multi-scale de-noising algorithm for cables based on 3 Dpoint cloud was designed.First of all,the original 3 Dpoint cloud cable data is filtered by the statistical outlier elimination filtering algorithm to remove isolated outliers in large-scale space.Secondly,adaptive improvements based on radius and standard deviation are applied to the two parameters C and S of traditional two-sided filtering.Finally,the proposed adaptive bilateral filtering algorithm based on radius and standard deviation is used to remove the small scale fluctuation noise points in 3 Dpoint cloud cable data.Experimental results show that the algorithm proposed in this paper can remove noise points at multiple scales on 3 Dpoint cloud cable data without manual adjustment of parameters,define the cable boundary,achieve ideal point cloud denoising effect,and lay agood foundation for subsequent visual inspection of cable segmentation and identification.
作者
陈世海
李俊明
王雯
Chen Shihai;Li Junming;Wang Wen(Beijing Zhongdian Puhua Information Technology Co.,Ltd.,Xi'an Branch,Xi'an 710065,China)
出处
《国外电子测量技术》
2020年第10期115-118,共4页
Foreign Electronic Measurement Technology
关键词
3D点云
电缆
去噪
3D points cloud
cable
denoising