期刊文献+

基于单句表示的篇章事件可信度识别方法 被引量:1

An Approach to Document-Level Event Factuality Identification Based on Sentence-Level Representations
下载PDF
导出
摘要 事件可信度表示文本中事件的真实状况,描述了事件是否是一个事实,或是一种可能还是不可能的情形,是自然语言处理中一个重要的语义任务。目前,大多数关于事件可信度分析的方法都集中在句子级,很少涉及篇章级。该文基于卷积神经网络,结合篇章中的句子级特征(包括句子的语义、语法以及线索词特征表示),使用对抗训练来识别篇章可信度。在中英文数据集上的结果显示,该文方法与最新的实验结果相比,微平均F1值分别提高了3.51%和6.02%,宏平均F1值分别提升了4.63%和9.97%。同时,该方法在训练速度上也提高了4倍。 Event factuality denotes the factual nature of events in texts,indicating whether an event is a fact,a possibility,or an impossible situation.As an important semantic task in natural language processing,the existing studies on event factuality identification are focused on sentences-level.Based on the convolutional neural network,this paper proposes document-level factuality by introducting the sentence-level features in the text,including the semantic,grammar and clues of the sentence.Experimental results on both the Chinese and English corpus show that,1)the micro-average F1 is increased by 3.51%and 6.02%,respectively;2)the macro-average F1 is increased by 4.63%and 9.97%,respectively.The training speed of this method is also four times faster than the baseline.
作者 张刘敏 张赟 李培峰 ZHANG Liumin;ZHANG Yun;LI Peifeng(School of Computer Science and Technology,Soochow University,Suzhou,Jiangsu 215006,China)
出处 《中文信息学报》 CSCD 北大核心 2020年第10期69-75,84,共8页 Journal of Chinese Information Processing
基金 国家自然科学基金(61836007,61772354,61773276) 江苏省高校优势学科建设工程项目。
关键词 事件可信度识别 句子级表示 线索词 event factuality identification sentence-level representation clue word
  • 相关文献

参考文献3

二级参考文献15

  • 1孙茂松,肖明,邹嘉彦.基于无指导学习策略的无词表条件下的汉语自动分词[J].计算机学报,2004,27(6):736-742. 被引量:37
  • 2黄萱菁,吴立德,王文欣,叶丹瑾.基于机器学习的无需人工编制词典的切词系统[J].模式识别与人工智能,1996,9(4):297-303. 被引量:24
  • 3Sproat, Richard, Shih C. A statistical method for finding word boundaries in Chinese text [J]. Computer Processing of Chinese and Oriental Languages, 1990, 4: 336-51.
  • 4Maosong S, Dayang S, Tsou B K. Chinese word seg mentation without using lexicon and hand-crafted train- ing data [C]//Proceedings of the 17th International Conference on Computational linguistics-Volume 2, F, 1998.
  • 5Pitman J, Yor M. The two-parameter Poisson- Dirichlet distribution derived from a stable subordina- tor [J]. The Annals of Probability, 1997, 25(2) : 855-900.
  • 6Goldwater S, Griffiths T L, Johnson M. Contextual dependencies in unsupervised word segmentation[C]// Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meet- ing of the Association for Computational Linguistics, F, 2006.
  • 7Goldwater S, Griffiths T L, Johnson M. A Bayesian framework for word segmentation: Exploring the effects of context [J]. Cognition, 2009, 112(1): 21-54.
  • 8TEH Y W. A hierarchical Bayesian language model based on Pitman-Yor processes [C]//Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meeting of the Asso ciation for Computational Linguistics, F, 2006.
  • 9Wood F, Teh Y W. A hierarchical, hierarchical Pit- man Yor process language model[C]//Proceedings of the ICML 2008 Workshop on Nonparametric Bayes, F, 2008.
  • 10Xu T, Zhang Z, Yu P S, et al. Evolutionary cluste- ring by hierarchical dirichlet process with hidden markov state[C]//Proceedings of the Data Mining, ICDM'08 Eighth IEEE International Conference on, F, 2008. IEEE.

共引文献28

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部