期刊文献+

基于深度帧差卷积神经网络的运动目标检测方法研究 被引量:15

Research of Moving Object Detection Based on Deep Frame Difference Convolution Neural Network
下载PDF
导出
摘要 复杂场景中的运动目标检测是计算机视觉领域的重要问题,其检测准确度仍然是一大挑战.本文提出并设计了一种用于复杂场景中运动目标检测的深度帧差卷积神经网络(Deep Difference Convolutional Neural Network,DFDCNN).DFDCNN由DifferenceNet和AppearanceNet组成,不需要后处理就可以预测分割前景像素.DifferenceNet具有孪生Encoder-Decoder结构,用于学习两个连续帧之间的变化,从输入(t帧和t+1帧)中获取时序信息;AppearanceNet用于从输入(t帧)中提取空间信息,并与时序信息融合;同时,通过多尺度特征图融合和逐步上采样来保留多尺度空间信息,以提高网络对小目标的敏感性.在公开标准数据集CDnet2014和I2R上的实验结果表明:DFDCNN不仅在动态背景、光照变化和阴影存在的复杂场景中具有更好的检测性能,而且在小目标存在的场景中也具有较好的检测效果. Moving object detection in complex scenes is an important problem in computer vision domain,and the detection accuracy is still a great challenge.In this paper,we propose and design a deep frame difference convolution neural network(DFDCNN)for moving object detection in complex scenes.DFDCNN consists of DifferenceNet and AppearanceNet,which can predict and segment the foreground pixels simultaneously without post-processing.DifferenceNet has Siamese Encoder-Decoder structure,which is used to learn changes between two consecutive frames and to obtain temporal information from inputs,while AppearanceNet is used to extract spatial information from the input frame,and fuse the temporal information and spatial information by fusion of feature maps.Finally,multi-scale spatial information is retained through multi-scale feature map fusion and stepwise up-sampling to improve the sensitivity to small objects.Experiments on two public standard datasets:CDnet2014 and I2R demonstrate that the proposed DFDCNN outperforms the classic algorithms significantly from both qualitative and quantitative aspects.The experimental results illustrate that the proposed DFDCNN shows much better detection performance in complex scenes where dynamic background,illumination variation and shadow exist,and there is improvement for scenes,in which small objects exist.
作者 欧先锋 晏鹏程 王汉谱 涂兵 何伟 张国云 徐智 OU Xian-feng;YAN Peng-cheng;WANG Han-pu;TU Bing;HE Wei;ZHANG Guo-yun;XU Zhi(School of Information and Communication Engineering,Machine Vision & Artificial Intelligence Research Center,Hunan Institute of Science and Technology,Yueyang,Hunan 414006,China;Guangxi Key Laboratory of Images and Graphics Intelligent Processing,Guilin University of Electronics Technology,Guilin,Guangxi 541004,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2020年第12期2384-2393,共10页 Acta Electronica Sinica
基金 湖南省自然科学基金项目(No.2020JJ4340,No.2020JJ4343) 国家自然科学基金(No.61662014) 湖南省教育厅优秀青年项目(No.19B245) 湖南省研究生教育创新工程和专业能力提升工程项目(No.CX20201114) 湖南省三维重建与智能应用技术工程研究中心(No.2019-430602-73-03-006049) 湖南省应急通信工程技术研究中心(No.2018TP2022) 广西科技基地和人才专项(No.AD19110022)。
关键词 运动目标检测 复杂场景 深度帧差卷积神经网络 时序信息 空间信息 多尺度特征图融合 moving object detection complex scenes deep frame difference convolutional neural network temporal information spatial information multi-scale feature map fusion
  • 相关文献

同被引文献202

引证文献15

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部