期刊文献+

基于改进灰狼算法的机器人激励轨迹优化 被引量:9

Optimization of Robot Excitation Trajectory Based on Improved Gray Wolf Optimizer
下载PDF
导出
摘要 针对协作型机器人惯性参数辨识中激励轨迹设计问题,文章提出了一种采用改进灰狼算法(SGWO)用于优化设计激励轨迹参数方法。首先,用Newton-Euler递推法推导并建立了机器人最小惯性参数观测矩阵,并将观测矩阵条件数准则作为优化目标函数;其次,引入改进灰狼算法(SGWO).通过反向最优最差策略改善种群初始值,采用sigmoid函数优化收敛因子;最后,利用改进灰狼算法(SGWO)优化设计了满足多约束条件的周期傅里叶级数作为激励轨迹。实验结果表明,采用所提优化方法设计的激励轨迹可以充分激发机器人动力学特性,提高参数辨识的抗噪能力,为准确获取机器人动力学参数奠定基础。 To deal with the problem of excitation trajectory design in the identification of inertial parameters of collaborative robots.An improved Grey Wolf optimizer(SGWO)is proposed to optimize and design the excitation trajectory parameters.First,the minimum observation matrix of the robot dynamics model is derived by the Newton-Euler method,and the minimum condition number of the inertia matrix is used as the optimization objective function.Secondly,the improved gray wolf optimizer(SGWO)is introduced.The initial value of the population is optimized by the inverse optimal worst-case strategy,and the sigmoid function is used to optimize the convergence factor.Finally,the improved grey Wolf optimizer(SGWO)is used to optimize the periodic Fourier series satisfying multiple constraints as the excitation trajectory.The experimental results show that the excitation trajectory designed by the proposed optimization method can fully stimulate the dynamic characteristics of the robot,improve the anti-noise ability of parameter identification,and lay the foundation for accurately obtaining the dynamic parameters of the robot.
作者 刘磊 赵刚 唐康峻 颜鹏程 周七 LIU Lei;ZHAO Gang;TANG Kang-jun;YAN Peng-cheng;ZHOU Qi(Key Laboratory of Metallurgical Equipment and Control Technology,Ministry of Education,Wuhan University of Science and Technology,Wuhan 430081,China;Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering,Wuhan University of Science and Technology,Wuhan 430081,China;School of Machinery and Automation,Wuhan University of Science and Technology,Wuhan 430081,China)
出处 《组合机床与自动化加工技术》 北大核心 2020年第12期35-38,共4页 Modular Machine Tool & Automatic Manufacturing Technique
关键词 动力学模型 参数辨识 激励轨迹 灰狼算法 dynamic model parameter identification excitation trajectory grey wolf optimizer
  • 相关文献

参考文献3

二级参考文献23

  • 1于兴永,孙蕾,陈卫东,傅学锋.基于基座力传感器机器人连杆惯性参数识别[J].机械传动,2006,30(6):17-21. 被引量:3
  • 2陈恩伟,刘正士,干方建.机器人末端臂惯性参数辨识的人工神经网络方法[J].中国机械工程,2006,17(3):268-271. 被引量:6
  • 3耿令波.工业机器人动力学参数辨识方法研究[D].南京航空航天大学2013
  • 4Alessandro Gasparetto,Paolo Boscariol,Albano Lanzutti,Renato Vidoni.Trajectory Planning in Robotics[J]. Mathematics in Computer Science . 2012 (3)
  • 5John Gregory,Alberto Olivares,Ernesto Staffetti.Energy‐optimal trajectory planning for the Pendubot and the Acrobot[J]. Optim. Control Appl. Meth. . 2012 (3)
  • 6Jun Wu,Jinsong Wang,Zheng You.An overview of dynamic parameter identification of robots[J]. Robotics and Computer Integrated Manufacturing . 2010 (5)
  • 7Zhongkai Qin,Luc Baron,Lionel Birglen.A new approach to the dynamic parameter identification of robotic manipulators[J]. Robotica . 2009 (4)
  • 8Lu Lu,Bin Yao,Qingfeng Wang,Zheng Chen.Adaptive robust control of linear motors with dynamic friction compensation using modified LuGre model[J]. Automatica . 2009 (12)
  • 9M. Gautier,Ph. Poignet.Extended Kalman filtering and weighted least squares dynamic identification of robot[J]. Control Engineering Practice . 2001 (12)
  • 10J. Swevers,C. Ganseman,J. De Schutter,H. Van Brussel.EXPERIMENTAL ROBOT IDENTIFICATION USING OPTIMISED PERIODIC TRAJECTORIES[J]. Mechanical Systems and Signal Processing . 1996 (5)

共引文献39

同被引文献60

引证文献9

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部