期刊文献+

基于路网空间拓扑结构的交通流数据填补模型研究 被引量:1

A Study on Improved Imputation Methods for Traffic Flow Data Based on Spatial Topology of Road Network
下载PDF
导出
摘要 由于传感器故障、状况不稳定或数据传输等问题,交通流数据存在大量丢失的情况,对依靠这些数据进行交通科学决策产生了很大的影响。基于以上问题,提出一种基于空间拓扑结构的交通流数据填补方法,模型通过选取区域的典型道路训练上下游之间相关参数,根据道路类型匹配典型道路,应用典型道路的参数进行交通流数据填补,并利用武汉市实际交通检测器数据进行模型验证。选取武汉市实际道路上2个典型地磁检测器进行数据填补误差分析,不同填补方式下的平均相对误差为52.88%和51.93%,相对于传统的交通流数据填补建模来说,基于空间拓扑结构的填补模型在实际的应用过程中,能够在更大的范围内对丢失的交通流数据进行填补。 Due to breakdown or technical issues of sensors and/or unstable data transmission,a large amount of traffic flow data is missing,which has significant impacts on scientific traffic decisions rely on the data.Based on the prob⁃lems,an imputation model of traffic flow data based on spatial topology of the road network is proposed.The model trains the relevant parameters by using the data from typical upstream and downstream road segments in one region.The selected model with trained parameters is used to impute the missing data from the candidate road segment based on the traffic flow data from upstream or downstream.The traffic detector data from Wuhan are used to verify these models.Two typical geomagnetic detectors are selected for accuracy analysis of the proposed imputation models.The APE of improved methods is found to be 52.88%and 51.93%,respectively.The results show that compared to tradi⁃tional imputation models,the models proposed in this paper can impute the missing data of traffic counts at a much larger scale,even for those detectors without sufficient historical,local data.
作者 孙江涛 钟鸣 马晓凤 刘少博 SUN Jiangtao;ZHONG Ming;MAXiaofeng;LIU Shaobo(Intelligent Transportation Systems Research Center,Wuhan University of Technology,Wuhan 430063,China;National Engineering Research Center for Water Transport Safety,Wuhan University of Technology,Wuhan 430063,China)
出处 《交通信息与安全》 CSCD 北大核心 2020年第4期76-83,共8页 Journal of Transport Information and Safety
基金 国家自然科学基金项目(51678461、51778510) 国家重点研发计划综合交通运输与智能交通重点专项项目(2018YFB1600900)资助。
关键词 智能交通 检测器 空间拓扑结构 数据填补方法 intelligent transportation sensors spatial topology imputation methods
  • 相关文献

参考文献4

二级参考文献26

  • 1韩卫国,王劲峰,胡建军.交通流量数据缺失值的插补方法[J].交通与计算机,2005,23(1):39-42. 被引量:25
  • 2许志红.公路交通量季节变动指数的测定方法[J].交通标准化,2005,33(9):110-112. 被引量:1
  • 3张文彤.SPSS11统计分析教程(高级篇)[M].北京:希望电子出版社,2002.166-171.
  • 4Stanislaw B. Data screening evaluation test report[R]. Chicago: Urban Transportation Center, 1996.
  • 5Koppelman F S, Lin W. Development of an expressway incident detection algorithm for the advance area based on the California algorithm set[R]. Evanston: the Transportation Center.1997.
  • 6江龙晖 姜桂艳.交通传感器数据的筛选和检验条件分析[A]..2003全国智能交通系统交通信息采集与融合技术研讨会[C].杭州:浙江大学出版社,2003..
  • 7刘同明 夏祖勋 等.数据融合技术及其应用[M].北京:国防工业出版社,2000..
  • 8Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the em algorithm.Journal of the Royal Statistical Society, 1977, 39(1): 1-38.
  • 9Raghunathan R E, Siscovick D S. A multiple-imputation analysis of a case-controlled study of the risk of primary cardiac arrest among pharmacologically treated hypertensives. Applied Statistics,1996, 45(3): 335-352.
  • 10Schafer J L. NORM: Multiple imputation of incomplete multivariate data under a normal model.Available from: http://www, stat. psu. edu/-jls/misoftwa, html.

共引文献70

同被引文献8

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部