期刊文献+

单Kinect+圆盒的多视角三维点云配准方法研究

Multi-View 3D Point Cloud Registration with Single Kinect and Round Box
下载PDF
导出
摘要 提出一种基于单Kinect和圆盒的多视角点云自动配准方法。首先,建模物体放在回转圆盒上,用Kinect V2(Kinect升级版)对建模物体和圆盒每隔60°进行一次点云采集,获得6个闭合的多视角点云。其次,用传统ICP配准算法对0°到180°视角范围内的3个点云进行两两配准后生成前部点云,对180°到360°视角范围内的3个点云做同样处理后生成后部点云。再次,用基于圆盒特征和小型包围盒约束的方法对前部点云和后部点云进行粗配准。最后,用基于圆盒交接区域的特征和SVD奇异值刚性变换矩阵评估法对前部点云和后部点云进行细配准。实验结果表明,该方法对三维点云的配准质量优于传统方法。 An automatic registration method of multi-view point cloud based on single Kinect and round box was proposed.Firstly,the modeling ob⁃ject was placed on a round box,and Kinect V2(Kinect plus)was used to collect the point clouds of the modeling object and the round box every 60 degrees,and six closed multi-view point clouds were obtained.Secondly,three point clouds in the range of 0°to 180°angle of view were registered by traditional ICP registration algorithm,and then the front point cloud was generated,and three point clouds in the range of 180°to 360°angle of view were also processed to generate the back point cloud.Thirdly,based on the feature of round box and the constraint of small bounding box,coarse registration of front and back point clouds was carried out.Finally,the matching between the front point cloud and the back point cloud was achieved by using the characteristics of the box junction region and the SVD singular value rigid transformation matrix evaluation method.Finally,the front point cloud and the back point cloud were fine registered by using the characteristics of the intersection region of the round box and the SVD singular value rigid transformation matrix evaluation method.Experi⁃mental results show that the registration quality of this method is superior to the traditional method.
作者 黄思捷 梁正友 孙宇 李轩昂 HUANG Si-jie;LIANG Zheng-you;SUN Yu;LI Xuan-ang(School of Computer and Electronic information,Guangxi University,Nanning 530004;Guangxi Key Laboratory of Multimedia Communications and Network Technology,Nanning 530004)
出处 《现代计算机》 2020年第31期38-45,共8页 Modern Computer
基金 广西科技计划项目(桂科合15104001-28)。
关键词 KINECT 多视角点云 配准 小型包围盒 迭代最近点算法 Kinect Multi-View Point Cloud Registration Small Bounding Box ICP
  • 相关文献

参考文献8

二级参考文献69

  • 1张剑清,翟瑞芳,郑顺义.激光扫描多三维视图的全自动无缝镶嵌[J].武汉大学学报(信息科学版),2007,32(2):100-103. 被引量:24
  • 2吕振铎,雷拥军.卫星姿态测量与确定[M].北京:国防工业出版社,2013:226-233.
  • 3Martin A. Fischler,Robert C. Bolles.Random sample consensus[J]. Communications of the ACM . 1981 (6)
  • 4Tahir Rabbani,Sander Dijkman,Frank van den Heuvel,George Vosselman.An integrated approach for modelling and global registration of point clouds[J].ISPRS Journal of Photogrammetry and Remote Sensing.2006(6)
  • 5Shi Pu,George Vosselman.Knowledge based reconstruction of building models from terrestrial laser scanning data[J].ISPRS Journal of Photogrammetry and Remote Sensing.2009(6)
  • 6Herbert Bay,Andreas Ess,Tinne Tuytelaars,Luc Van Gool.Speeded-Up Robust Features (SURF)[J].Computer Vision and Image Understanding.2007(3)
  • 7Shahar Barnea,Sagi Filin.Keypoint based autonomous registration of terrestrial laser point-clouds[J].ISPRS Journal of Photogrammetry and Remote Sensing.2007(1)
  • 8C. Brenner,C. Dold,N. Ripperda.Coarse orientation of terrestrial laser scans in urban environments[J].ISPRS Journal of Photogrammetry and Remote Sensing.2007(1)
  • 9KhalilAl‐Manasir,Clive S.Fraser.Registration of terrestrial laser scanner data using imagery[J].The Photogrammetric Record.2006(115)
  • 10Armin Gruen,Devrim Akca.Least squares 3D surface and curve matching[J].ISPRS Journal of Photogrammetry and Remote Sensing.2005(3)

共引文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部